stylecodes-sd15-demo / controlnet /callable_functions.py
CiaraRowles's picture
Update controlnet/callable_functions.py
5891366 verified
raw
history blame
5.19 kB
import argparse
import os
import torch
from PIL import Image
from diffusers import DDIMScheduler
from controlnet.pipline_controlnet_xs_v2 import StableDiffusionPipelineXSv2
from controlnet.controlnetxs_appearance import StyleCodesModel
from diffusers.models import UNet2DConditionModel
from transformers import AutoProcessor, SiglipVisionModel
def use_stylecode(model,image_path, prompt,negative_prompt, num_inference_steps, stylecode,seed=None,image=None):
# Load and preprocess image
# Set up model components
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda")
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda")
print("running prompt = ",prompt, " negative_prompt = ",negative_prompt, " with code ", stylecode)
stylecodes_model.load_model(model)
pipe = StableDiffusionPipelineXSv2.from_pretrained(
"runwayml/stable-diffusion-v1-5",
unet=unet,
stylecodes_model=stylecodes_model,
torch_dtype=torch.float16,
device="cuda",
#scheduler=noise_scheduler,
feature_extractor=None,
safety_checker=None,
)
pipe.enable_model_cpu_offload()
if image is None:
image = Image.open(image_path).convert("RGB")
image = image.resize((512, 512))
# Set up generator with a fixed seed for reproducibility
if seed is not None and not -1:
generator = torch.Generator(device="cuda").manual_seed(seed)
else:
generator = None
# Run the image through the pipeline with the specified prompt
output_images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=3,
#image=image,
num_inference_steps=num_inference_steps,
generator=generator,
controlnet_conditioning_scale=0.9,
width=512,
height=512,
stylecode=stylecode,
).images
return output_images
def process_single_image_both_ways(model,image_path, prompt, num_inference_steps,image=None):
# Load and preprocess image
# Set up model components
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda")
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda")
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
stylecodes_model.load_model(model)
pipe = StableDiffusionPipelineXSv2.from_pretrained(
"runwayml/stable-diffusion-v1-5",
unet=unet,
stylecodes_model=stylecodes_model,
torch_dtype=torch.float16,
device="cuda",
#scheduler=noise_scheduler,
feature_extractor=None,
safety_checker=None,
)
pipe.enable_model_cpu_offload()
if image is None:
image = Image.open(image_path).convert("RGB")
image = image.resize((512, 512))
# Set up generator with a fixed seed for reproducibility
seed = 238
generator = torch.Generator(device="cuda").manual_seed(seed)
# Run the image through the pipeline with the specified prompt
output_images = pipe(
prompt=prompt,
guidance_scale=3,
image=image,
num_inference_steps=num_inference_steps,
generator=generator,
controlnet_conditioning_scale=0.9,
width=512,
height=512,
stylecode=None,
).images
return output_images
# Save the output image
def make_stylecode(model,image_path, image=None):
# Set up model components
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda")
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda")
stylecodes_model.requires_grad_(False)
stylecodes_model= stylecodes_model.to("cuda")
stylecodes_model.load_model(model)
# Load and preprocess image
if image is None:
image = Image.open(image_path).convert("RGB")
image = image.resize((512, 512))
# Set up generator with a fixed seed for reproducibility
seed = 238
clip_image_processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
image_encoder = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224").to(dtype=torch.float16,device=stylecodes_model.device)
clip_image = clip_image_processor(images=image, return_tensors="pt").pixel_values
clip_image = clip_image.to(stylecodes_model.device, dtype=torch.float16)
clip_image = {"pixel_values": clip_image}
clip_image_embeds = image_encoder(**clip_image, output_hidden_states=True).hidden_states[-2]
# Run the image through the pipeline with the specified prompt
code = stylecodes_model.sref_autoencoder.make_stylecode(clip_image_embeds)
print("stylecode = ",code)
return code