Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import os | |
import torch | |
from PIL import Image | |
from diffusers import DDIMScheduler | |
from controlnet.pipline_controlnet_xs_v2 import StableDiffusionPipelineXSv2 | |
from controlnet.controlnetxs_appearance import StyleCodesModel | |
from diffusers.models import UNet2DConditionModel | |
from transformers import AutoProcessor, SiglipVisionModel | |
def use_stylecode(model,image_path, prompt,negative_prompt, num_inference_steps, stylecode,seed=None,image=None): | |
# Load and preprocess image | |
# Set up model components | |
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda") | |
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda") | |
print("running prompt = ",prompt, " negative_prompt = ",negative_prompt, " with code ", stylecode) | |
stylecodes_model.load_model(model) | |
pipe = StableDiffusionPipelineXSv2.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
unet=unet, | |
stylecodes_model=stylecodes_model, | |
torch_dtype=torch.float16, | |
device="cuda", | |
#scheduler=noise_scheduler, | |
feature_extractor=None, | |
safety_checker=None, | |
) | |
pipe.enable_model_cpu_offload() | |
if image is None: | |
image = Image.open(image_path).convert("RGB") | |
image = image.resize((512, 512)) | |
# Set up generator with a fixed seed for reproducibility | |
if seed is not None and not -1: | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
else: | |
generator = None | |
# Run the image through the pipeline with the specified prompt | |
output_images = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=3, | |
#image=image, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
controlnet_conditioning_scale=0.9, | |
width=512, | |
height=512, | |
stylecode=stylecode, | |
).images | |
return output_images | |
def process_single_image_both_ways(model,image_path, prompt, num_inference_steps,image=None): | |
# Load and preprocess image | |
# Set up model components | |
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda") | |
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda") | |
noise_scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
stylecodes_model.load_model(model) | |
pipe = StableDiffusionPipelineXSv2.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
unet=unet, | |
stylecodes_model=stylecodes_model, | |
torch_dtype=torch.float16, | |
device="cuda", | |
#scheduler=noise_scheduler, | |
feature_extractor=None, | |
safety_checker=None, | |
) | |
pipe.enable_model_cpu_offload() | |
if image is None: | |
image = Image.open(image_path).convert("RGB") | |
image = image.resize((512, 512)) | |
# Set up generator with a fixed seed for reproducibility | |
seed = 238 | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
# Run the image through the pipeline with the specified prompt | |
output_images = pipe( | |
prompt=prompt, | |
guidance_scale=3, | |
image=image, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
controlnet_conditioning_scale=0.9, | |
width=512, | |
height=512, | |
stylecode=None, | |
).images | |
return output_images | |
# Save the output image | |
def make_stylecode(model,image_path, image=None): | |
# Set up model components | |
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda") | |
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda") | |
stylecodes_model.requires_grad_(False) | |
stylecodes_model= stylecodes_model.to("cuda") | |
stylecodes_model.load_model(model) | |
# Load and preprocess image | |
if image is None: | |
image = Image.open(image_path).convert("RGB") | |
image = image.resize((512, 512)) | |
# Set up generator with a fixed seed for reproducibility | |
seed = 238 | |
clip_image_processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") | |
image_encoder = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224").to(dtype=torch.float16,device=stylecodes_model.device) | |
clip_image = clip_image_processor(images=image, return_tensors="pt").pixel_values | |
clip_image = clip_image.to(stylecodes_model.device, dtype=torch.float16) | |
clip_image = {"pixel_values": clip_image} | |
clip_image_embeds = image_encoder(**clip_image, output_hidden_states=True).hidden_states[-2] | |
# Run the image through the pipeline with the specified prompt | |
code = stylecodes_model.sref_autoencoder.make_stylecode(clip_image_embeds) | |
print("stylecode = ",code) | |
return code |