Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| from transformers import Wav2Vec2Processor | |
| from transformers.models.wav2vec2.modeling_wav2vec2 import ( | |
| Wav2Vec2Model, | |
| Wav2Vec2PreTrainedModel, | |
| ) | |
| import os | |
| import librosa | |
| import numpy as np | |
| class RegressionHead(nn.Module): | |
| r"""Classification head.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.dropout = nn.Dropout(config.final_dropout) | |
| self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
| def forward(self, features, **kwargs): | |
| x = features | |
| x = self.dropout(x) | |
| x = self.dense(x) | |
| x = torch.tanh(x) | |
| x = self.dropout(x) | |
| x = self.out_proj(x) | |
| return x | |
| class EmotionModel(Wav2Vec2PreTrainedModel): | |
| r"""Speech emotion classifier.""" | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.config = config | |
| self.wav2vec2 = Wav2Vec2Model(config) | |
| self.classifier = RegressionHead(config) | |
| self.init_weights() | |
| def forward( | |
| self, | |
| input_values, | |
| ): | |
| outputs = self.wav2vec2(input_values) | |
| hidden_states = outputs[0] | |
| hidden_states = torch.mean(hidden_states, dim=1) | |
| logits = self.classifier(hidden_states) | |
| return hidden_states, logits | |
| # load model from hub | |
| device = 'cuda' if torch.cuda.is_available() else "cpu" | |
| model_name = 'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim' | |
| processor = Wav2Vec2Processor.from_pretrained(model_name) | |
| model = EmotionModel.from_pretrained(model_name).to(device) | |
| def process_func( | |
| x: np.ndarray, | |
| sampling_rate: int, | |
| embeddings: bool = False, | |
| ) -> np.ndarray: | |
| r"""Predict emotions or extract embeddings from raw audio signal.""" | |
| # run through processor to normalize signal | |
| # always returns a batch, so we just get the first entry | |
| # then we put it on the device | |
| y = processor(x, sampling_rate=sampling_rate) | |
| y = y['input_values'][0] | |
| y = torch.from_numpy(y).to(device) | |
| y = y.unsqueeze(0) | |
| # run through model | |
| with torch.no_grad(): | |
| y = model(y)[0 if embeddings else 1] | |
| # convert to numpy | |
| y = y.detach().cpu().numpy() | |
| return y | |
| # | |
| # | |
| # def disp(rootpath, wavname): | |
| # wav, sr = librosa.load(f"{rootpath}/{wavname}", 16000) | |
| # display(ipd.Audio(wav, rate=sr)) | |
| rootpath = "dataset" | |
| embs = [] | |
| wavnames = [] | |
| def extract_dir(path): | |
| rootpath = path | |
| for idx, wavname in enumerate(os.listdir(rootpath)): | |
| wav, sr =librosa.load(f"{rootpath}/{wavname}", sr=16000) | |
| emb = process_func(np.expand_dims(wav, 0), sr, embeddings=True) | |
| embs.append(emb) | |
| wavnames.append(wavname) | |
| np.save(f"{rootpath}/{wavname}.emo.npy", emb.squeeze(0)) | |
| print(idx, wavname) | |
| def extract_wav(path): | |
| wav, sr = librosa.load(path, sr=16000) | |
| emb = process_func(np.expand_dims(wav, 0), sr, embeddings=True) | |
| return emb | |
| if __name__ == '__main__': | |
| # for spk in ["serena", "koni", "nyaru","shanoa", "mana"]: | |
| for spk in ["dubbingx"]: | |
| extract_dir(f"dataset/{spk}") | |