Spaces:
Sleeping
Sleeping
### 1. Imports and class names setup ### | |
import gradio as gr | |
import os | |
import torch | |
import torchvision.transforms as T | |
from model import create_effnet_b2 | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
# Setup class names | |
class_names = ['pizza', 'steak', 'sushi'] | |
### 2. Model and transforms preparation ### | |
test_tsfm = T.Compose([T.Resize((224,224)), | |
T.ToTensor(), | |
T.Normalize(mean=[0.485, 0.456, 0.406], # 3. A mean of [0.485, 0.456, 0.406] (across each colour channel) | |
std=[0.229, 0.224, 0.225]) # 4. A standard deviation of [0.229, 0.224, 0.225] (across each colour channel), | |
]) | |
# Create EffNetB2 Model | |
effnetb2, test_transform = create_effnet_b2(num_of_class=len(class_names), | |
transform=test_tsfm, | |
seed=42) | |
# saved_path = 'demos\foodvision_mini\09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth' | |
saved_path = '07_effnetb2_data_50_percent_10_epochs.pth' | |
print('Loading Model State Dictionary') | |
# Load saved weights | |
effnetb2.load_state_dict( | |
torch.load(f=saved_path, | |
map_location=torch.device('cpu'), # load to CPU | |
) | |
) | |
print('Model Loaded ...') | |
### 3. Predict function ### | |
# Create predict function | |
from typing import Tuple, Dict | |
def predict(img) -> Tuple[Dict, float]: | |
"""Transforms and performs a prediction on img and returns prediction and time taken. | |
""" | |
# Start the timer | |
start_time = timer() | |
# Transform the target image and add a batch dimension | |
img = test_tsfm(img).unsqueeze(0) | |
# Put model into evaluation mode and turn on inference mode | |
effnetb2.eval() | |
with torch.inference_mode(): | |
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities | |
pred_probs = torch.softmax(effnetb2(img), dim=1) | |
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
# Calculate the prediction time | |
pred_time = round(timer() - start_time, 5) | |
# Return the prediction dictionary and prediction time | |
return pred_labels_and_probs, pred_time | |
### 4. Gradio App ### | |
# Create title, description and article strings | |
title= 'FoodVision Mini ππ₯©π£' | |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi." | |
article = "Created at Chukwuka using Mr. DBourke Tutorial [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)." | |
# Create examples list from "examples/" directory | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # mapping function from input to output | |
inputs=gr.inputs.Image(type='pil'), # What are the inputs? | |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs? | |
gr.Number(label='Prediction time (s)')], # Our fn has two outputs, therefore we have two outputs | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article | |
) | |
# Launch the demo | |
print('Gradio Demo Launched') | |
demo.launch() | |