Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from peft import PeftModel | |
| import torch | |
| # Base model (4-bit LLaMA) | |
| base_model_id = "unsloth/Llama-3.2-3B-Instruct-bnb-4bit" | |
| # Your LoRA adapter repo | |
| adapter_id = "Christi049/meal-gen-adapter" | |
| # Load tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(base_model_id) | |
| # Load base model | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| base_model_id, | |
| torch_dtype=torch.float16, | |
| device_map="auto" | |
| ) | |
| # Apply LoRA adapter | |
| model = PeftModel.from_pretrained(base_model, adapter_id) | |
| def generate_meal(prompt): | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.7) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| iface = gr.Interface( | |
| fn=generate_meal, | |
| inputs=gr.Textbox(label="Meal Request", placeholder="e.g., Generate a 7-day vegetarian meal plan"), | |
| outputs=gr.Textbox(label="Generated Meal Plan"), | |
| title="Weekly Meal Generator" | |
| ) | |
| iface.launch() | |