ChrisPreston's picture
Upload 95 files
93f4bab
import glob
import importlib
import os
import matplotlib
import numpy as np
import torch
import torch.distributions
import torch.optim
import torch.optim
import torch.utils.data
from preprocessing.process_pipeline import File2Batch
from utils.hparams import hparams
from utils.indexed_datasets import IndexedDataset
from utils.pitch_utils import norm_interp_f0
matplotlib.use('Agg')
class SvcDataset(torch.utils.data.Dataset):
def __init__(self, prefix, shuffle=False):
super().__init__()
self.hparams = hparams
self.shuffle = shuffle
self.sort_by_len = hparams['sort_by_len']
self.sizes = None
self.data_dir = hparams['binary_data_dir']
self.prefix = prefix
self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy')
self.indexed_ds = None
# self.name2spk_id={}
# pitch stats
f0_stats_fn = f'{self.data_dir}/train_f0s_mean_std.npy'
if os.path.exists(f0_stats_fn):
hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = np.load(f0_stats_fn)
hparams['f0_mean'] = float(hparams['f0_mean'])
hparams['f0_std'] = float(hparams['f0_std'])
else:
hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = None, None
if prefix == 'test':
if hparams['test_input_dir'] != '':
self.indexed_ds, self.sizes = self.load_test_inputs(hparams['test_input_dir'])
else:
if hparams['num_test_samples'] > 0:
self.avail_idxs = list(range(hparams['num_test_samples'])) + hparams['test_ids']
self.sizes = [self.sizes[i] for i in self.avail_idxs]
@property
def _sizes(self):
return self.sizes
def _get_item(self, index):
if hasattr(self, 'avail_idxs') and self.avail_idxs is not None:
index = self.avail_idxs[index]
if self.indexed_ds is None:
self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
return self.indexed_ds[index]
def __getitem__(self, index):
item = self._get_item(index)
max_frames = hparams['max_frames']
spec = torch.Tensor(item['mel'])[:max_frames]
# energy = (spec.exp() ** 2).sum(-1).sqrt()
mel2ph = torch.LongTensor(item['mel2ph'])[:max_frames] if 'mel2ph' in item else None
f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams)
hubert = torch.Tensor(item['hubert'][:hparams['max_input_tokens']])
pitch = torch.LongTensor(item.get("pitch"))[:max_frames]
sample = {
"id": index,
"item_name": item['item_name'],
"hubert": hubert,
"mel": spec,
"pitch": pitch,
"f0": f0,
"uv": uv,
"mel2ph": mel2ph,
"mel_nonpadding": spec.abs().sum(-1) > 0,
}
if hparams['use_energy_embed']:
sample['energy'] = item['energy']
if hparams['use_spk_embed']:
sample["spk_embed"] = torch.Tensor(item['spk_embed'])
if hparams['use_spk_id']:
sample["spk_id"] = item['spk_id']
return sample
@staticmethod
def collater(samples):
return File2Batch.processed_input2batch(samples)
@staticmethod
def load_test_inputs(test_input_dir):
inp_wav_paths = glob.glob(f'{test_input_dir}/*.wav') + glob.glob(f'{test_input_dir}/*.mp3')
sizes = []
items = []
binarizer_cls = hparams.get("binarizer_cls", 'basics.base_binarizer.BaseBinarizer')
pkg = ".".join(binarizer_cls.split(".")[:-1])
cls_name = binarizer_cls.split(".")[-1]
binarizer_cls = getattr(importlib.import_module(pkg), cls_name)
from preprocessing.hubertinfer import HubertEncoder
for wav_fn in inp_wav_paths:
item_name = os.path.basename(wav_fn)
wav_fn = wav_fn
encoder = HubertEncoder(hparams['hubert_path'])
item = binarizer_cls.process_item(item_name, {'wav_fn': wav_fn}, encoder)
print(item)
items.append(item)
sizes.append(item['len'])
return items, sizes
def __len__(self):
return len(self._sizes)
def num_tokens(self, index):
return self.size(index)
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
size = min(self._sizes[index], hparams['max_frames'])
return size
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
indices = np.random.permutation(len(self))
if self.sort_by_len:
indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')]
# 先random, 然后稳定排序, 保证排序后同长度的数据顺序是依照random permutation的 (被其随机打乱).
else:
indices = np.arange(len(self))
return indices
@property
def num_workers(self):
return int(os.getenv('NUM_WORKERS', hparams['ds_workers']))