Spaces:
Build error
Build error
import copy | |
import random | |
from typing import Optional, Tuple | |
import librosa | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as t_func | |
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present | |
class Hubert(nn.Module): | |
def __init__(self, num_label_embeddings: int = 100, mask: bool = True): | |
super().__init__() | |
self._mask = mask | |
self.feature_extractor = FeatureExtractor() | |
self.feature_projection = FeatureProjection() | |
self.positional_embedding = PositionalConvEmbedding() | |
self.norm = nn.LayerNorm(768) | |
self.dropout = nn.Dropout(0.1) | |
self.encoder = TransformerEncoder( | |
nn.TransformerEncoderLayer( | |
768, 12, 3072, activation="gelu", batch_first=True | |
), | |
12, | |
) | |
self.proj = nn.Linear(768, 256) | |
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_()) | |
self.label_embedding = nn.Embedding(num_label_embeddings, 256) | |
def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
mask = None | |
if self.training and self._mask: | |
mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2) | |
x[mask] = self.masked_spec_embed.to(x.dtype) | |
return x, mask | |
def encode( | |
self, x: torch.Tensor, layer: Optional[int] = None | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
x = self.feature_extractor(x) | |
x = self.feature_projection(x.transpose(1, 2)) | |
x, mask = self.mask(x) | |
x = x + self.positional_embedding(x) | |
x = self.dropout(self.norm(x)) | |
x = self.encoder(x, output_layer=layer) | |
return x, mask | |
def logits(self, x: torch.Tensor) -> torch.Tensor: | |
logits = torch.cosine_similarity( | |
x.unsqueeze(2), | |
self.label_embedding.weight.unsqueeze(0).unsqueeze(0), | |
dim=-1, | |
) | |
return logits / 0.1 | |
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
x, mask = self.encode(x) | |
x = self.proj(x) | |
logits = self.logits(x) | |
return logits, mask | |
class HubertSoft(Hubert): | |
def __init__(self): | |
super().__init__() | |
# @torch.inference_mode() | |
def units(self, wav: torch.Tensor) -> torch.Tensor: | |
wav = torch.nn.functional.pad(wav, ((400 - 320) // 2, (400 - 320) // 2)) | |
x, _ = self.encode(wav) | |
return self.proj(x) | |
def forward(self, wav: torch.Tensor): | |
return self.units(wav) | |
class FeatureExtractor(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False) | |
self.norm0 = nn.GroupNorm(512, 512) | |
self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False) | |
self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False) | |
self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False) | |
self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False) | |
self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False) | |
self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = t_func.gelu(self.norm0(self.conv0(x))) | |
x = t_func.gelu(self.conv1(x)) | |
x = t_func.gelu(self.conv2(x)) | |
x = t_func.gelu(self.conv3(x)) | |
x = t_func.gelu(self.conv4(x)) | |
x = t_func.gelu(self.conv5(x)) | |
x = t_func.gelu(self.conv6(x)) | |
return x | |
class FeatureProjection(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.norm = nn.LayerNorm(512) | |
self.projection = nn.Linear(512, 768) | |
self.dropout = nn.Dropout(0.1) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.norm(x) | |
x = self.projection(x) | |
x = self.dropout(x) | |
return x | |
class PositionalConvEmbedding(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.conv = nn.Conv1d( | |
768, | |
768, | |
kernel_size=128, | |
padding=128 // 2, | |
groups=16, | |
) | |
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.conv(x.transpose(1, 2)) | |
x = t_func.gelu(x[:, :, :-1]) | |
return x.transpose(1, 2) | |
class TransformerEncoder(nn.Module): | |
def __init__( | |
self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int | |
) -> None: | |
super(TransformerEncoder, self).__init__() | |
self.layers = nn.ModuleList( | |
[copy.deepcopy(encoder_layer) for _ in range(num_layers)] | |
) | |
self.num_layers = num_layers | |
def forward( | |
self, | |
src: torch.Tensor, | |
mask: torch.Tensor = None, | |
src_key_padding_mask: torch.Tensor = None, | |
output_layer: Optional[int] = None, | |
) -> torch.Tensor: | |
output = src | |
for layer in self.layers[:output_layer]: | |
output = layer( | |
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask | |
) | |
return output | |
def _compute_mask( | |
shape: Tuple[int, int], | |
mask_prob: float, | |
mask_length: int, | |
device: torch.device, | |
min_masks: int = 0, | |
) -> torch.Tensor: | |
batch_size, sequence_length = shape | |
if mask_length < 1: | |
raise ValueError("`mask_length` has to be bigger than 0.") | |
if mask_length > sequence_length: | |
raise ValueError( | |
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`" | |
) | |
# compute number of masked spans in batch | |
num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random()) | |
num_masked_spans = max(num_masked_spans, min_masks) | |
# make sure num masked indices <= sequence_length | |
if num_masked_spans * mask_length > sequence_length: | |
num_masked_spans = sequence_length // mask_length | |
# SpecAugment mask to fill | |
mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool) | |
# uniform distribution to sample from, make sure that offset samples are < sequence_length | |
uniform_dist = torch.ones( | |
(batch_size, sequence_length - (mask_length - 1)), device=device | |
) | |
# get random indices to mask | |
mask_indices = torch.multinomial(uniform_dist, num_masked_spans) | |
# expand masked indices to masked spans | |
mask_indices = ( | |
mask_indices.unsqueeze(dim=-1) | |
.expand((batch_size, num_masked_spans, mask_length)) | |
.reshape(batch_size, num_masked_spans * mask_length) | |
) | |
offsets = ( | |
torch.arange(mask_length, device=device)[None, None, :] | |
.expand((batch_size, num_masked_spans, mask_length)) | |
.reshape(batch_size, num_masked_spans * mask_length) | |
) | |
mask_idxs = mask_indices + offsets | |
# scatter indices to mask | |
mask = mask.scatter(1, mask_idxs, True) | |
return mask | |
def hubert_soft( | |
path: str | |
) -> HubertSoft: | |
r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`. | |
Args: | |
path (str): path of a pretrained model | |
""" | |
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
hubert = HubertSoft() | |
checkpoint = torch.load(path, map_location="cpu") | |
consume_prefix_in_state_dict_if_present(checkpoint, "module.") | |
hubert.load_state_dict(checkpoint) | |
hubert.eval().to(dev) | |
return hubert | |
def get_units(hbt_soft, raw_wav_path, dev=torch.device('cuda')): | |
wav, sr = librosa.load(raw_wav_path, sr=None) | |
assert (sr >= 16000) | |
if len(wav.shape) > 1: | |
wav = librosa.to_mono(wav) | |
if sr != 16000: | |
wav16 = librosa.resample(wav, sr, 16000) | |
else: | |
wav16 = wav | |
dev = torch.device("cuda" if (dev == torch.device('cuda') and torch.cuda.is_available()) else "cpu") | |
torch.cuda.is_available() and torch.cuda.empty_cache() | |
with torch.inference_mode(): | |
units = hbt_soft.units(torch.FloatTensor(wav16.astype(float)).unsqueeze(0).unsqueeze(0).to(dev)) | |
return units | |