ChrisPreston's picture
Upload 95 files
93f4bab
raw
history blame
3.34 kB
import os
import torch
from modules.nsf_hifigan.models import load_model
from modules.nsf_hifigan.nvSTFT import load_wav_to_torch, STFT
from utils.hparams import hparams
nsf_hifigan = None
def register_vocoder(cls):
global nsf_hifigan
nsf_hifigan = cls
return cls
@register_vocoder
class NsfHifiGAN():
def __init__(self, device=None):
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = device
model_path = hparams['vocoder_ckpt']
if os.path.exists(model_path):
print('| Load HifiGAN: ', model_path)
self.model, self.h = load_model(model_path, device=self.device)
else:
print('Error: HifiGAN model file is not found!')
def spec2wav(self, mel, **kwargs):
if self.h.sampling_rate != hparams['audio_sample_rate']:
print('Mismatch parameters: hparams[\'audio_sample_rate\']=', hparams['audio_sample_rate'], '!=',
self.h.sampling_rate, '(vocoder)')
if self.h.num_mels != hparams['audio_num_mel_bins']:
print('Mismatch parameters: hparams[\'audio_num_mel_bins\']=', hparams['audio_num_mel_bins'], '!=',
self.h.num_mels, '(vocoder)')
if self.h.n_fft != hparams['fft_size']:
print('Mismatch parameters: hparams[\'fft_size\']=', hparams['fft_size'], '!=', self.h.n_fft, '(vocoder)')
if self.h.win_size != hparams['win_size']:
print('Mismatch parameters: hparams[\'win_size\']=', hparams['win_size'], '!=', self.h.win_size,
'(vocoder)')
if self.h.hop_size != hparams['hop_size']:
print('Mismatch parameters: hparams[\'hop_size\']=', hparams['hop_size'], '!=', self.h.hop_size,
'(vocoder)')
if self.h.fmin != hparams['fmin']:
print('Mismatch parameters: hparams[\'fmin\']=', hparams['fmin'], '!=', self.h.fmin, '(vocoder)')
if self.h.fmax != hparams['fmax']:
print('Mismatch parameters: hparams[\'fmax\']=', hparams['fmax'], '!=', self.h.fmax, '(vocoder)')
with torch.no_grad():
c = torch.FloatTensor(mel).unsqueeze(0).transpose(2, 1).to(self.device)
# log10 to log mel
c = 2.30259 * c
f0 = kwargs.get('f0')
f0 = torch.FloatTensor(f0[None, :]).to(self.device)
y = self.model(c, f0).view(-1)
wav_out = y.cpu().numpy()
return wav_out
@staticmethod
def wav2spec(inp_path, device=None):
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
sampling_rate = hparams['audio_sample_rate']
num_mels = hparams['audio_num_mel_bins']
n_fft = hparams['fft_size']
win_size = hparams['win_size']
hop_size = hparams['hop_size']
fmin = hparams['fmin']
fmax = hparams['fmax']
stft = STFT(sampling_rate, num_mels, n_fft, win_size, hop_size, fmin, fmax)
with torch.no_grad():
wav_torch, _ = load_wav_to_torch(inp_path, target_sr=stft.target_sr)
mel_torch = stft.get_mel(wav_torch.unsqueeze(0).to(device)).squeeze(0).T
# log mel to log10 mel
mel_torch = 0.434294 * mel_torch
return wav_torch.cpu().numpy(), mel_torch.cpu().numpy()