Spaces:
Running
on
Zero
Running
on
Zero
yisol
commited on
Commit
β’
595105e
1
Parent(s):
3af7a49
update demo code
Browse files- app.py +14 -4
- src/tryon_pipeline.py +22 -24
app.py
CHANGED
@@ -23,7 +23,7 @@ import apply_net
|
|
23 |
from preprocess.humanparsing.run_parsing import Parsing
|
24 |
from preprocess.openpose.run_openpose import OpenPose
|
25 |
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
|
26 |
-
|
27 |
|
28 |
|
29 |
def pil_to_binary_mask(pil_image, threshold=0):
|
@@ -141,6 +141,8 @@ def start_tryon(dict,garm_img,garment_des,is_checked,denoise_steps,seed):
|
|
141 |
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
|
142 |
mask = transforms.ToTensor()(mask)
|
143 |
mask = mask.unsqueeze(0)
|
|
|
|
|
144 |
|
145 |
|
146 |
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
|
@@ -191,7 +193,9 @@ def start_tryon(dict,garm_img,garment_des,is_checked,denoise_steps,seed):
|
|
191 |
do_classifier_free_guidance=False,
|
192 |
negative_prompt=negative_prompt,
|
193 |
)
|
194 |
-
|
|
|
|
|
195 |
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
|
196 |
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
|
197 |
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
|
@@ -213,7 +217,7 @@ def start_tryon(dict,garm_img,garment_des,is_checked,denoise_steps,seed):
|
|
213 |
ip_adapter_image = garm_img.resize((768,1024)),
|
214 |
guidance_scale=2.0,
|
215 |
)[0]
|
216 |
-
return images[0]
|
217 |
|
218 |
garm_list = os.listdir(os.path.join(example_path,"cloth"))
|
219 |
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
|
@@ -253,10 +257,16 @@ with image_blocks as demo:
|
|
253 |
inputs=garm_img,
|
254 |
examples_per_page=8,
|
255 |
examples=garm_list_path)
|
|
|
|
|
|
|
256 |
with gr.Column():
|
257 |
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
258 |
image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
|
259 |
|
|
|
|
|
|
|
260 |
with gr.Column():
|
261 |
try_button = gr.Button(value="Try-on")
|
262 |
with gr.Accordion(label="Advanced Settings", open=False):
|
@@ -265,7 +275,7 @@ with image_blocks as demo:
|
|
265 |
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
266 |
|
267 |
|
268 |
-
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked, denoise_steps, seed], outputs=[image_out], api_name='tryon')
|
269 |
|
270 |
|
271 |
|
|
|
23 |
from preprocess.humanparsing.run_parsing import Parsing
|
24 |
from preprocess.openpose.run_openpose import OpenPose
|
25 |
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
|
26 |
+
from torchvision.tranfsorms.functional import to_pil_image
|
27 |
|
28 |
|
29 |
def pil_to_binary_mask(pil_image, threshold=0):
|
|
|
141 |
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
|
142 |
mask = transforms.ToTensor()(mask)
|
143 |
mask = mask.unsqueeze(0)
|
144 |
+
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
|
145 |
+
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
|
146 |
|
147 |
|
148 |
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
|
|
|
193 |
do_classifier_free_guidance=False,
|
194 |
negative_prompt=negative_prompt,
|
195 |
)
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
|
200 |
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
|
201 |
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
|
|
|
217 |
ip_adapter_image = garm_img.resize((768,1024)),
|
218 |
guidance_scale=2.0,
|
219 |
)[0]
|
220 |
+
return images[0], mask_gray
|
221 |
|
222 |
garm_list = os.listdir(os.path.join(example_path,"cloth"))
|
223 |
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
|
|
|
257 |
inputs=garm_img,
|
258 |
examples_per_page=8,
|
259 |
examples=garm_list_path)
|
260 |
+
with gr.Column():
|
261 |
+
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
262 |
+
masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
|
263 |
with gr.Column():
|
264 |
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
265 |
image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
|
266 |
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
with gr.Column():
|
271 |
try_button = gr.Button(value="Try-on")
|
272 |
with gr.Accordion(label="Advanced Settings", open=False):
|
|
|
275 |
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
276 |
|
277 |
|
278 |
+
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
|
279 |
|
280 |
|
281 |
|
src/tryon_pipeline.py
CHANGED
@@ -480,36 +480,30 @@ class StableDiffusionXLInpaintPipeline(
|
|
480 |
|
481 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
482 |
def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
|
483 |
-
if not isinstance(ip_adapter_image, list):
|
484 |
-
|
485 |
|
486 |
# if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
487 |
# raise ValueError(
|
488 |
# f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
489 |
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
490 |
|
491 |
-
image_embeds = []
|
492 |
-
# print(ip_adapter_image.shape)
|
493 |
-
for single_ip_adapter_image in ip_adapter_image:
|
494 |
-
# print(single_ip_adapter_image.shape)
|
495 |
-
# ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
496 |
-
output_hidden_state = not isinstance(self.unet.encoder_hid_proj, ImageProjection)
|
497 |
-
# print(output_hidden_state)
|
498 |
-
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
499 |
-
single_ip_adapter_image, device, 1, output_hidden_state
|
500 |
-
)
|
501 |
-
# print(single_image_embeds.shape)
|
502 |
-
# single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
503 |
-
# single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
|
504 |
-
# print(single_image_embeds.shape)
|
505 |
-
if self.do_classifier_free_guidance:
|
506 |
-
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
507 |
-
single_image_embeds = single_image_embeds.to(device)
|
508 |
-
|
509 |
-
image_embeds.append(single_image_embeds)
|
510 |
|
511 |
return image_embeds
|
512 |
|
|
|
513 |
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
514 |
def encode_prompt(
|
515 |
self,
|
@@ -1724,8 +1718,10 @@ class StableDiffusionXLInpaintPipeline(
|
|
1724 |
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1725 |
ip_adapter_image, device, batch_size * num_images_per_prompt
|
1726 |
)
|
1727 |
-
|
1728 |
-
|
|
|
|
|
1729 |
|
1730 |
# 11. Denoising loop
|
1731 |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
@@ -1759,6 +1755,8 @@ class StableDiffusionXLInpaintPipeline(
|
|
1759 |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1760 |
).to(device=device, dtype=latents.dtype)
|
1761 |
|
|
|
|
|
1762 |
self._num_timesteps = len(timesteps)
|
1763 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1764 |
for i, t in enumerate(timesteps):
|
@@ -1781,7 +1779,7 @@ class StableDiffusionXLInpaintPipeline(
|
|
1781 |
# predict the noise residual
|
1782 |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1783 |
if ip_adapter_image is not None:
|
1784 |
-
added_cond_kwargs["image_embeds"] = image_embeds
|
1785 |
# down,reference_features = self.UNet_Encoder(cloth,t, text_embeds_cloth,added_cond_kwargs= {"text_embeds": pooled_prompt_embeds_c, "time_ids": add_time_ids},return_dict=False)
|
1786 |
down,reference_features = self.unet_encoder(cloth,t, text_embeds_cloth,return_dict=False)
|
1787 |
# print(type(reference_features))
|
|
|
480 |
|
481 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
482 |
def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
|
483 |
+
# if not isinstance(ip_adapter_image, list):
|
484 |
+
# ip_adapter_image = [ip_adapter_image]
|
485 |
|
486 |
# if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
487 |
# raise ValueError(
|
488 |
# f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
489 |
# )
|
490 |
+
output_hidden_state = not isinstance(self.unet.encoder_hid_proj, ImageProjection)
|
491 |
+
# print(output_hidden_state)
|
492 |
+
image_embeds, negative_image_embeds = self.encode_image(
|
493 |
+
ip_adapter_image, device, 1, output_hidden_state
|
494 |
+
)
|
495 |
+
# print(single_image_embeds.shape)
|
496 |
+
# single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
497 |
+
# single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
|
498 |
+
# print(single_image_embeds.shape)
|
499 |
+
if self.do_classifier_free_guidance:
|
500 |
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
501 |
+
image_embeds = image_embeds.to(device)
|
502 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
|
504 |
return image_embeds
|
505 |
|
506 |
+
|
507 |
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
508 |
def encode_prompt(
|
509 |
self,
|
|
|
1718 |
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1719 |
ip_adapter_image, device, batch_size * num_images_per_prompt
|
1720 |
)
|
1721 |
+
|
1722 |
+
#project outside for loop
|
1723 |
+
image_embeds = unet.encoder_hid_proj(image_embeds).to(prompt_embeds.dtype)
|
1724 |
+
|
1725 |
|
1726 |
# 11. Denoising loop
|
1727 |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
|
1755 |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1756 |
).to(device=device, dtype=latents.dtype)
|
1757 |
|
1758 |
+
|
1759 |
+
|
1760 |
self._num_timesteps = len(timesteps)
|
1761 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1762 |
for i, t in enumerate(timesteps):
|
|
|
1779 |
# predict the noise residual
|
1780 |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1781 |
if ip_adapter_image is not None:
|
1782 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1783 |
# down,reference_features = self.UNet_Encoder(cloth,t, text_embeds_cloth,added_cond_kwargs= {"text_embeds": pooled_prompt_embeds_c, "time_ids": add_time_ids},return_dict=False)
|
1784 |
down,reference_features = self.unet_encoder(cloth,t, text_embeds_cloth,return_dict=False)
|
1785 |
# print(type(reference_features))
|