Spaces:
Sleeping
Sleeping
Update sentiment_analysis.py
Browse files- sentiment_analysis.py +17 -17
sentiment_analysis.py
CHANGED
@@ -8,12 +8,8 @@ class SentimentAnalysisTool(Tool):
|
|
8 |
description = "This tool analyses the sentiment of a given text input."
|
9 |
|
10 |
inputs = ["text"] # Adding an empty list for inputs
|
11 |
-
|
12 |
outputs = ["json"]
|
13 |
|
14 |
-
def __call__(self, inputs: str):
|
15 |
-
return predicto(str)
|
16 |
-
|
17 |
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment"
|
18 |
model_id_2 = "microsoft/deberta-xlarge-mnli"
|
19 |
model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english"
|
@@ -22,25 +18,29 @@ class SentimentAnalysisTool(Tool):
|
|
22 |
model_id_6 = "sbcBI/sentiment_analysis_model"
|
23 |
model_id_7 = "models/oliverguhr/german-sentiment-bert"
|
24 |
|
25 |
-
def
|
26 |
-
|
|
|
|
|
|
|
27 |
for i in range(len(output_json[0])):
|
28 |
label = output_json[0][i]['label']
|
29 |
score = output_json[0][i]['score']
|
30 |
list_pred.append((label, score))
|
31 |
return list_pred
|
32 |
|
33 |
-
def get_prediction(model_id):
|
34 |
classifier = pipeline("text-classification", model=model_id, return_all_scores=True)
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
8 |
description = "This tool analyses the sentiment of a given text input."
|
9 |
|
10 |
inputs = ["text"] # Adding an empty list for inputs
|
|
|
11 |
outputs = ["json"]
|
12 |
|
|
|
|
|
|
|
13 |
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment"
|
14 |
model_id_2 = "microsoft/deberta-xlarge-mnli"
|
15 |
model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english"
|
|
|
18 |
model_id_6 = "sbcBI/sentiment_analysis_model"
|
19 |
model_id_7 = "models/oliverguhr/german-sentiment-bert"
|
20 |
|
21 |
+
def __call__(self, inputs: str):
|
22 |
+
return self.predicto(inputs)
|
23 |
+
|
24 |
+
def parse_output(self, output_json):
|
25 |
+
list_pred = []
|
26 |
for i in range(len(output_json[0])):
|
27 |
label = output_json[0][i]['label']
|
28 |
score = output_json[0][i]['score']
|
29 |
list_pred.append((label, score))
|
30 |
return list_pred
|
31 |
|
32 |
+
def get_prediction(self, model_id):
|
33 |
classifier = pipeline("text-classification", model=model_id, return_all_scores=True)
|
34 |
+
return classifier
|
35 |
+
|
36 |
+
def predicto(self, review):
|
37 |
+
classifier = self.get_prediction(self.model_id_3)
|
38 |
+
prediction = classifier(review)
|
39 |
+
print(prediction)
|
40 |
+
return self.parse_output(prediction)
|
41 |
|
42 |
+
# Create an instance of the SentimentAnalysisTool class
|
43 |
+
sentiment_analysis_tool = SentimentAnalysisTool()
|
44 |
|
45 |
+
# Create the Gradio interface
|
46 |
+
gr.Interface(fn=sentiment_analysis_tool, inputs=sentiment_analysis_tool.inputs, outputs=sentiment_analysis_tool.outputs).launch()
|
|