Spaces:
Sleeping
Sleeping
import requests | |
import gradio as gr | |
from transformers import pipeline | |
from transformers import Tool | |
class SentimentAnalysisTool(Tool): | |
name = "sentiment_analysis" | |
description = "This tool analyses the sentiment of a given text input." | |
inputs = ["text"] # Adding an empty list for inputs | |
outputs = ["json"] | |
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment" | |
model_id_2 = "microsoft/deberta-xlarge-mnli" | |
model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english" | |
model_id_4 = "lordtt13/emo-mobilebert" | |
model_id_5 = "juliensimon/reviews-sentiment-analysis" | |
model_id_6 = "sbcBI/sentiment_analysis_model" | |
model_id_7 = "models/oliverguhr/german-sentiment-bert" | |
def __call__(self, inputs: str): | |
return self.predicto(inputs) | |
def parse_output(self, output_json): | |
list_pred = [] | |
for i in range(len(output_json[0])): | |
label = output_json[0][i]['label'] | |
score = output_json[0][i]['score'] | |
list_pred.append((label, score)) | |
return list_pred | |
def get_prediction(self, model_id): | |
classifier = pipeline("text-classification", model=model_id, return_all_scores=True) | |
return classifier | |
def predicto(self, review): | |
classifier = self.get_prediction(self.model_id_3) | |
prediction = classifier(review) | |
print(prediction) | |
return self.parse_output(prediction) | |
# Create an instance of the SentimentAnalysisTool class | |
sentiment_analysis_tool = SentimentAnalysisTool() | |
# Create the Gradio interface | |
#gr.Interface(fn=sentiment_analysis_tool, inputs=sentiment_analysis_tool.inputs, outputs=sentiment_analysis_tool.outputs).launch(share=True) | |