rag-tool / app.py
Chris4K's picture
Update app.py
619a1f2
raw
history blame
2.22 kB
import os
#!pip install -q gradio langchain pypdf chromadb
import gradio as gr
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
# Use Hugging Face Inference API embeddings
inference_api_key = os.environ['HF']
api_hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key=inference_api_key,
model_name="sentence-transformers/all-MiniLM-l6-v2"
)
# Load and process the PDF files
loader = PyPDFLoader("./new_papers/ALiBi.pdf")
documents = loader.load()
print("-----------")
print(documents[0])
print("-----------")
# Load the document, split it into chunks, embed each chunk, and load it into the vector store.
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
vdocuments = text_splitter.split_documents(documents)
# Add these lines before creating the Chroma vector store
#print("Length of embeddings: %s", len(api_hf_embeddings))
print("Length of documents: %s" % len(documents))
print("Length of vdocuments: %s", len(vdocuments))
# Add these lines before creating the Chroma vector store
#logger.debug("Length of vdocuments: %s", len(vdocuments))
if vdocuments and 'embeddings' in vdocuments[0]:
first_document_embeddings = vdocuments[0]['embeddings']
print("Length of embeddings for the first document: {}".format(len(first_document_embeddings)))
# Create Chroma vector store for API embeddings
api_db = Chroma.from_documents(vdocuments, api_hf_embeddings, collection_name="api-collection")
# Define the PDF retrieval function
def pdf_retrieval(query):
# Run the query through the retriever
response = api_db.similarity_search(query)
return response
# Create Gradio interface for the API retriever
# Create Gradio interface for the API retriever
api_tool = gr.Interface(
fn=pdf_retrieval,
inputs=[gr.Textbox()],
outputs=gr.Textbox(),
live=True,
title="API PDF Retrieval Tool",
description="This tool indexes PDF documents and retrieves relevant answers based on a given query (HF Inference API Embeddings).",
)
# Launch the Gradio interface
api_tool.launch()