Chris4K's picture
Update app.py
7a83584 verified
raw
history blame
6.09 kB
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from langchain_community.llms import HuggingFaceHub
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from urllib.parse import urlparse, urljoin
import requests
from bs4 import BeautifulSoup
app = FastAPI()
# Middleware to allow cross-origin communications
app.add_middleware(
CORSMiddleware,
allow_origins=['*'],
allow_credentials=True,
allow_methods=['*'],
allow_headers=['*'],
)
# Define retriever_chain as a global variable
retriever_chain = None
# Function to crawl all URLs from a domain
def get_all_links_from_domain(domain_url):
print("domain url " + domain_url)
visited_urls = set()
domain_links = set()
parsed_initial_url = urlparse(domain_url)
base_domain = parsed_initial_url.netloc
get_links_from_page(domain_url, visited_urls, domain_links, domain_url)
return domain_links
# Function to crawl links from a page within the same domain
def get_links_from_page(url, visited_urls, all_links, base_domain):
print("url " + url)
print("base_domain " + base_domain)
if not url.startswith(base_domain):
return
if url in visited_urls:
return
visited_urls.add(url)
print("Getting next" + url)
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
base_url = urlparse(url).scheme + '://' + urlparse(url).netloc
links = soup.find_all('a', href=True)
for link in links:
href = link.get('href')
absolute_url = urljoin(base_url, href)
parsed_url = urlparse(absolute_url)
if parsed_url.netloc == base_domain:
all_links.add(absolute_url)
get_links_from_page(absolute_url, visited_urls, all_links, base_domain)
else:
print(f"Failed to retrieve content from {url}. Status code: {response.status_code}")
# Function to load the RAG model
def load_rag_model():
model = HuggingFaceHub(
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
model_kwargs={"max_length": 1048, "temperature":0.2, "max_new_tokens":256, "top_p":0.95, "repetition_penalty":1.0},
)
return model
# Function to index URLs in RAG
def index_urls_in_rag(urls):
# Create a vector store for storing embeddings of documents
vector_store = Chroma(persist_directory="/home/user/.cache/chroma_db")
# Load the RAG model
rag_model = load_rag_model()
for url in urls:
# Get text from the URL
loader = WebBaseLoader(url)
document = loader.load()
# Split the document into chunks
text_splitter = RecursiveCharacterTextSplitter()
document_chunks = text_splitter.split_documents(document)
# Index document chunks into the vector store
vector_store.add_documents(document_chunks)
# Convert vector store to retriever
retriever = vector_store.as_retriever()
# Define prompt for RAG model
prompt = ChatPromptTemplate.from_messages([
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
])
# Create history-aware retriever chain
retriever_chain = create_history_aware_retriever(rag_model, retriever, prompt)
return retriever_chain
# Index URLs on app startup
@app.on_event("startup")
async def startup():
domain_url = 'https://www.bofrost.de/faq/'
urls = get_all_links_from_domain(domain_url)
print(urls)
# Define API endpoint to receive queries and provide responses
@app.post("/generate/")
def generate(user_input):
return get_response(user_input, [])
def get_conversational_rag_chain(retriever_chain):
llm = load_model(model_name)
prompt = ChatPromptTemplate.from_messages([
("system", "Du bist eine freundlicher Mitarbeiterin Namens Susie und arbeitest in einenm Call Center. Du beantwortest basierend auf dem Context. Benutze nur den Inhalt des Context. Füge wenn möglich die Quelle hinzu. Antworte mit: Ich bin mir nicht sicher. Wenn die Antwort nicht aus dem Context hervorgeht. Antworte auf Deutsch, bitte? CONTEXT:\n\n{context}"),
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
])
stuff_documents_chain = create_stuff_documents_chain(llm,prompt)
return create_retrieval_chain(retriever_chain, stuff_documents_chain)
def get_response(message, history=[]):
# dialog = history_to_dialog_format(history)
# dialog.append({"role": "user", "content": message})
# Define the prompt as a ChatPromptValue object
#user_input = ChatPromptValue(user_input)
# Convert the prompt to a tensor
#input_ids = user_input.tensor
model = "BAAI/bge-base-en-v1.5"
encode_kwargs = {
"normalize_embeddings": True
} # set True to compute cosine similarity
embeddings = HuggingFaceBgeEmbeddings(
model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
)
# load from disk
vector_store = Chroma(persist_directory="/home/user/.cache/chroma_db", embedding_function=embeddings)
history =[]
retriever_chain = get_context_retriever_chain(vector_store)
conversation_rag_chain = get_conversational_rag_chain(retriever_chain)
response = conversation_rag_chain.invoke({
"chat_history": history,
"input": message + " Assistant: ",
"chat_message": message + " Assistant: "
})
#print("get_response " +response)
res = response['answer']
parts = res.split(" Assistant: ")
last_part = parts[-1]
return last_part#[-1]['generation']['content']