Update app.py
Browse files
app.py
CHANGED
@@ -31,7 +31,7 @@ from sklearn.metrics import silhouette_score
|
|
31 |
from scipy.stats import spearmanr
|
32 |
from functools import lru_cache
|
33 |
from langchain.retrievers import MultiQueryRetriever
|
34 |
-
from
|
35 |
from transformers import pipeline
|
36 |
from sklearn.model_selection import ParameterGrid
|
37 |
from tqdm import tqdm
|
@@ -197,9 +197,11 @@ def optimize_query(query, llm_model, chunks, embedding_model, vector_store_type,
|
|
197 |
multi_query_retriever = MultiQueryRetriever.from_llm(
|
198 |
retriever=temp_retriever,
|
199 |
llm=llm
|
200 |
-
)
|
201 |
-
|
202 |
-
|
|
|
|
|
203 |
|
204 |
|
205 |
def create_custom_embedding(texts, model_type='word2vec', vector_size=100, window=5, min_count=1):
|
|
|
31 |
from scipy.stats import spearmanr
|
32 |
from functools import lru_cache
|
33 |
from langchain.retrievers import MultiQueryRetriever
|
34 |
+
from langchain_huggingfaces import HuggingFacePipeline
|
35 |
from transformers import pipeline
|
36 |
from sklearn.model_selection import ParameterGrid
|
37 |
from tqdm import tqdm
|
|
|
197 |
multi_query_retriever = MultiQueryRetriever.from_llm(
|
198 |
retriever=temp_retriever,
|
199 |
llm=llm
|
200 |
+
)
|
201 |
+
# Use a NoOpRunManager as the run_manager
|
202 |
+
run_manager = NoOpRunManager()
|
203 |
+
optimized_queries = multi_query_retriever.generate_queries(query, run_manager=run_manager)
|
204 |
+
return optimized_queries
|
205 |
|
206 |
|
207 |
def create_custom_embedding(texts, model_type='word2vec', vector_size=100, window=5, min_count=1):
|