Update app.py
Browse files
app.py
CHANGED
@@ -320,48 +320,138 @@ def phonetic_match(text, query, method='levenshtein_distance', apply_phonetic=Fa
|
|
320 |
return jellyfish.levenshtein_distance(text_phonetic, query_phonetic)
|
321 |
return 0
|
322 |
|
323 |
-
def optimize_query(
|
324 |
-
query: str,
|
325 |
-
llm_model: str = "meta-llama/Llama-3.2-1B",
|
326 |
-
chunks: List[str] = None,
|
327 |
-
embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2",
|
328 |
-
vector_store_type: str = "faiss",
|
329 |
-
search_type: str = "similarity",
|
330 |
-
top_k: int = 3 # Reduce top_k for quicker test
|
331 |
-
) -> List[str]:
|
332 |
-
# Initialize the language model
|
333 |
-
#llm = HuggingFacePipeline(pipeline(model=llm_model))
|
334 |
-
|
335 |
-
print('---- optimize query ----')
|
336 |
-
# Create a temporary vector store for query optimization
|
337 |
-
temp_vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
|
338 |
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
# Initialize MultiQueryRetriever with the temporary retriever and the language model
|
347 |
-
multi_query_retriever = MultiQueryRetriever.from_llm(
|
348 |
-
retriever=temp_retriever,
|
349 |
-
llm=llm
|
350 |
-
)
|
351 |
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
|
|
|
|
|
|
359 |
|
360 |
-
|
361 |
-
|
|
|
|
|
|
|
|
|
|
|
362 |
|
363 |
-
|
364 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
|
366 |
|
367 |
def create_custom_embedding(texts, model_type='word2vec', vector_size=100, window=5, min_count=1):
|
@@ -781,24 +871,26 @@ def compare_embeddings(file, query, embedding_models, custom_embedding_model, sp
|
|
781 |
if optimize_vocab:
|
782 |
tokenizer, optimized_chunks = optimize_vocabulary(chunks)
|
783 |
chunks = optimized_chunks
|
784 |
-
|
|
|
|
|
785 |
if use_query_optimization:
|
786 |
optimized_queries = optimize_query(query, query_optimization_model, chunks, embedding_model, vector_store_type, search_type, top_k)
|
787 |
#query = " ".join(optimized_queries)
|
788 |
-
|
789 |
|
790 |
results, search_time, vector_store, results_raw = search_embeddings(
|
791 |
chunks,
|
792 |
embedding_model,
|
793 |
vector_store_type,
|
794 |
search_type,
|
795 |
-
|
796 |
top_k,
|
797 |
expected_result,
|
798 |
lang,
|
799 |
apply_phonetic,
|
800 |
phonetic_weight
|
801 |
-
)
|
802 |
|
803 |
if use_reranking:
|
804 |
reranker = pipeline("text-classification", model="cross-encoder/ms-marco-MiniLM-L-12-v2")
|
|
|
320 |
return jellyfish.levenshtein_distance(text_phonetic, query_phonetic)
|
321 |
return 0
|
322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
+
from typing import List, Union
|
325 |
+
import torch
|
326 |
+
from transformers import AutoTokenizer, AutoModelForSeq2Gen
|
327 |
+
import numpy as np
|
328 |
+
from nltk.tokenize import word_tokenize
|
329 |
+
from nltk.corpus import wordnet
|
330 |
+
import nltk
|
|
|
|
|
|
|
|
|
|
|
331 |
|
332 |
+
def optimize_query(
|
333 |
+
query: str,
|
334 |
+
chunks: List[str],
|
335 |
+
embedding_model: str,
|
336 |
+
top_k: int = 3,
|
337 |
+
model_name: str = "google/flan-t5-small", # Small model (only 80M parameters)
|
338 |
+
use_gpu: bool = False # Default to CPU
|
339 |
+
) -> str:
|
340 |
+
"""
|
341 |
+
CPU-optimized version of query expansion using a small language model.
|
342 |
|
343 |
+
Args:
|
344 |
+
query: Original search query
|
345 |
+
chunks: List of text chunks to search through
|
346 |
+
embedding_model: Name of the embedding model being used
|
347 |
+
top_k: Number of expansion terms to add
|
348 |
+
model_name: Name of the small language model to use
|
349 |
+
use_gpu: Whether to use GPU if available (defaults to False for CPU)
|
350 |
|
351 |
+
Returns:
|
352 |
+
Expanded query string
|
353 |
+
"""
|
354 |
+
try:
|
355 |
+
# Set device
|
356 |
+
device = "cuda" if use_gpu and torch.cuda.is_available() else "cpu"
|
357 |
+
|
358 |
+
# 1. Basic text preprocessing (CPU-based)
|
359 |
+
tokens = word_tokenize(query.lower())
|
360 |
+
|
361 |
+
# 2. WordNet synonyms expansion (CPU-based)
|
362 |
+
expanded_terms = set()
|
363 |
+
for token in tokens:
|
364 |
+
# Limit synonym lookup to save CPU resources
|
365 |
+
synsets = wordnet.synsets(token)[:1] # Take only top synset per word
|
366 |
+
for syn in synsets:
|
367 |
+
# Limit number of lemmas
|
368 |
+
expanded_terms.update([lemma.name() for lemma in syn.lemmas()[:2]])
|
369 |
+
|
370 |
+
# 3. Use small T5 model with reduced complexity
|
371 |
+
try:
|
372 |
+
# Load model with reduced memory footprint
|
373 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
374 |
+
model_name,
|
375 |
+
model_max_length=128, # Limit maximum sequence length
|
376 |
+
cache_dir="./model_cache" # Cache models locally
|
377 |
+
)
|
378 |
+
model = AutoModelForSeq2Gen.from_pretrained(
|
379 |
+
model_name,
|
380 |
+
low_cpu_mem_usage=True, # Enable low memory usage
|
381 |
+
device_map="cpu" # Explicitly set to CPU
|
382 |
+
)
|
383 |
+
|
384 |
+
# Move model to CPU and eval mode
|
385 |
+
model = model.to(device)
|
386 |
+
model.eval() # Set to evaluation mode to reduce memory usage
|
387 |
+
|
388 |
+
# Prepare input with reduced length
|
389 |
+
prompt = f"Enhance this search query with relevant terms: {query}"
|
390 |
+
inputs = tokenizer(
|
391 |
+
prompt,
|
392 |
+
return_tensors="pt",
|
393 |
+
max_length=64, # Reduced from 128
|
394 |
+
truncation=True,
|
395 |
+
padding=True
|
396 |
+
)
|
397 |
+
|
398 |
+
# Generate with minimal parameters
|
399 |
+
with torch.no_grad(): # Disable gradient calculation
|
400 |
+
outputs = model.generate(
|
401 |
+
inputs.input_ids.to(device),
|
402 |
+
max_length=32, # Reduced from 64
|
403 |
+
num_return_sequences=1,
|
404 |
+
temperature=0.7,
|
405 |
+
do_sample=False, # Disable sampling for faster generation
|
406 |
+
early_stopping=True
|
407 |
+
)
|
408 |
+
|
409 |
+
enhanced_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
410 |
+
|
411 |
+
# Clear CUDA cache if GPU was used
|
412 |
+
if device == "cuda":
|
413 |
+
torch.cuda.empty_cache()
|
414 |
+
|
415 |
+
except Exception as model_error:
|
416 |
+
print(f"Model-based expansion failed: {str(model_error)}")
|
417 |
+
enhanced_query = query # Fallback to original query
|
418 |
+
|
419 |
+
# 4. Combine original and expanded terms
|
420 |
+
final_terms = set(tokens)
|
421 |
+
final_terms.update(expanded_terms)
|
422 |
+
if enhanced_query != query: # Only add if model expansion worked
|
423 |
+
final_terms.update(word_tokenize(enhanced_query.lower()))
|
424 |
+
|
425 |
+
# 5. Remove stopwords and select top_k most relevant terms
|
426 |
+
stopwords = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to'])
|
427 |
+
final_terms = [term for term in final_terms if term not in stopwords]
|
428 |
+
|
429 |
+
# Combine with original query
|
430 |
+
expanded_query = f"{query} {' '.join(list(final_terms)[:top_k])}"
|
431 |
+
|
432 |
+
# Clean up
|
433 |
+
del model
|
434 |
+
del tokenizer
|
435 |
+
if device == "cuda":
|
436 |
+
torch.cuda.empty_cache()
|
437 |
+
print(expanded_query.strip())
|
438 |
+
return expanded_query.strip()
|
439 |
+
|
440 |
+
except Exception as e:
|
441 |
+
print(f"Query optimization failed: {str(e)}")
|
442 |
+
return query # Return original query if optimization fails
|
443 |
+
|
444 |
+
# Example usage
|
445 |
+
"""
|
446 |
+
chunks = ["sample text chunk 1", "sample text chunk 2"]
|
447 |
+
query = "machine learning algorithms"
|
448 |
+
optimized_query = optimize_query(
|
449 |
+
query=query,
|
450 |
+
chunks=chunks,
|
451 |
+
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
|
452 |
+
use_gpu=False # Explicitly use CPU
|
453 |
+
)
|
454 |
+
"""
|
455 |
|
456 |
|
457 |
def create_custom_embedding(texts, model_type='word2vec', vector_size=100, window=5, min_count=1):
|
|
|
871 |
if optimize_vocab:
|
872 |
tokenizer, optimized_chunks = optimize_vocabulary(chunks)
|
873 |
chunks = optimized_chunks
|
874 |
+
|
875 |
+
search_query = query
|
876 |
+
|
877 |
if use_query_optimization:
|
878 |
optimized_queries = optimize_query(query, query_optimization_model, chunks, embedding_model, vector_store_type, search_type, top_k)
|
879 |
#query = " ".join(optimized_queries)
|
880 |
+
search_query = " ".join([doc.page_content for doc in optimized_queries]) # Extract text from Document objects
|
881 |
|
882 |
results, search_time, vector_store, results_raw = search_embeddings(
|
883 |
chunks,
|
884 |
embedding_model,
|
885 |
vector_store_type,
|
886 |
search_type,
|
887 |
+
search_query,
|
888 |
top_k,
|
889 |
expected_result,
|
890 |
lang,
|
891 |
apply_phonetic,
|
892 |
phonetic_weight
|
893 |
+
)
|
894 |
|
895 |
if use_reranking:
|
896 |
reranker = pipeline("text-classification", model="cross-encoder/ms-marco-MiniLM-L-12-v2")
|