Update app.py
Browse files
app.py
CHANGED
@@ -54,7 +54,35 @@ model_pipeline = pipeline(
|
|
54 |
)
|
55 |
|
56 |
# Use the pipeline in HuggingFacePipeline
|
57 |
-
llm = HuggingFacePipeline(pipeline=model_pipeline)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# NLTK Resource Download
|
60 |
def download_nltk_resources():
|
@@ -93,7 +121,7 @@ class ModelManager:
|
|
93 |
}
|
94 |
|
95 |
|
96 |
-
def update_model_ranking(self, model_id: str, score: float, feedback:
|
97 |
"""Update model ranking based on performance and optional feedback"""
|
98 |
current_score = self.rankings.get(model_id, 0.0)
|
99 |
# Weighted average of current score and new score
|
@@ -361,6 +389,8 @@ def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separator
|
|
361 |
return RecursiveCharacterTextSplitter(
|
362 |
chunk_size=chunk_size,
|
363 |
chunk_overlap=overlap_size,
|
|
|
|
|
364 |
separators=custom_separators or ["\n\n", "\n", " ", ""]
|
365 |
)
|
366 |
else:
|
@@ -369,7 +399,12 @@ def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separator
|
|
369 |
def get_embedding_model(model_type, model_name):
|
370 |
model_path = model_manager.get_model(model_type, model_name)
|
371 |
if model_type == 'HuggingFace':
|
372 |
-
return HuggingFaceEmbeddings(
|
|
|
|
|
|
|
|
|
|
|
373 |
elif model_type == 'OpenAI':
|
374 |
return OpenAIEmbeddings(model=model_path)
|
375 |
elif model_type == 'Cohere':
|
@@ -605,6 +640,15 @@ def visualize_results(results_df, stats_df):
|
|
605 |
|
606 |
plt.tight_layout()
|
607 |
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
608 |
def optimize_vocabulary(texts, vocab_size=10000, min_frequency=2):
|
609 |
tokenizer = Tokenizer(models.BPE(unk_token="[UNK]"))
|
610 |
|
|
|
54 |
)
|
55 |
|
56 |
# Use the pipeline in HuggingFacePipeline
|
57 |
+
#llm = HuggingFacePipeline(pipeline=model_pipeline)
|
58 |
+
|
59 |
+
##### Alternative
|
60 |
+
from transformers import pipeline
|
61 |
+
import torch
|
62 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
63 |
+
|
64 |
+
READER_MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
65 |
+
|
66 |
+
bnb_config = BitsAndBytesConfig(
|
67 |
+
load_in_4bit=True,
|
68 |
+
bnb_4bit_use_double_quant=True,
|
69 |
+
bnb_4bit_quant_type="nf4",
|
70 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
71 |
+
)
|
72 |
+
rmodel = AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME, quantization_config=bnb_config)
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained(READER_MODEL_NAME)
|
74 |
+
|
75 |
+
llm = pipeline(
|
76 |
+
model=rmodel,
|
77 |
+
tokenizer=tokenizer,
|
78 |
+
task="text-generation",
|
79 |
+
do_sample=True,
|
80 |
+
temperature=0.2,
|
81 |
+
repetition_penalty=1.1,
|
82 |
+
return_full_text=False,
|
83 |
+
max_new_tokens=500,
|
84 |
+
)
|
85 |
+
|
86 |
|
87 |
# NLTK Resource Download
|
88 |
def download_nltk_resources():
|
|
|
121 |
}
|
122 |
|
123 |
|
124 |
+
def update_model_ranking(self, model_id: str, score: float, feedback: str = None):
|
125 |
"""Update model ranking based on performance and optional feedback"""
|
126 |
current_score = self.rankings.get(model_id, 0.0)
|
127 |
# Weighted average of current score and new score
|
|
|
389 |
return RecursiveCharacterTextSplitter(
|
390 |
chunk_size=chunk_size,
|
391 |
chunk_overlap=overlap_size,
|
392 |
+
add_start_index=True, # If `True`, includes chunk's start index in metadata
|
393 |
+
strip_whitespace=True, # If `True`, strips whitespace from the start and end of every document
|
394 |
separators=custom_separators or ["\n\n", "\n", " ", ""]
|
395 |
)
|
396 |
else:
|
|
|
399 |
def get_embedding_model(model_type, model_name):
|
400 |
model_path = model_manager.get_model(model_type, model_name)
|
401 |
if model_type == 'HuggingFace':
|
402 |
+
return = HuggingFaceEmbeddings(
|
403 |
+
model_name=model_path,
|
404 |
+
multi_process=True,
|
405 |
+
model_kwargs={"device": "cuda"},
|
406 |
+
#encode_kwargs={"normalize_embeddings": True}, # Set `True` for cosine similarity
|
407 |
+
)
|
408 |
elif model_type == 'OpenAI':
|
409 |
return OpenAIEmbeddings(model=model_path)
|
410 |
elif model_type == 'Cohere':
|
|
|
640 |
|
641 |
plt.tight_layout()
|
642 |
return fig
|
643 |
+
|
644 |
+
|
645 |
+
#tokenizer = AutoTokenizer.from_pretrained(EMBEDDING_MODEL_NAME)
|
646 |
+
#lengths = [len(tokenizer.encode(doc.page_content)) for doc in tqdm(docs_processed)]
|
647 |
+
#fig = pd.Series(lengths).hist()
|
648 |
+
#plt.title("Distribution of document lengths in the knowledge base (in count of tokens)")
|
649 |
+
#plt.show()
|
650 |
+
|
651 |
+
|
652 |
def optimize_vocabulary(texts, vocab_size=10000, min_frequency=2):
|
653 |
tokenizer = Tokenizer(models.BPE(unk_token="[UNK]"))
|
654 |
|