Chris4K commited on
Commit
54e2c0d
1 Parent(s): d3b0430

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -9
app.py CHANGED
@@ -354,7 +354,7 @@ def optimize_query(
354
 
355
  Returns:
356
  Expanded query string
357
- """
358
  try:
359
  # Set device
360
  device = "cuda" if use_gpu and torch.cuda.is_available() else "cpu"
@@ -383,7 +383,7 @@ def optimize_query(
383
  Enhance the followinf search query with relevant terms.
384
 
385
  show me just the new term. You SHOULD NOT include any other text in the response.
386
-
387
  <|eot_id|><|start_header_id|>user<|end_header_id|>
388
  {query}
389
  <|eot_id|><|start_header_id|>assistant<|end_header_id|>
@@ -1084,10 +1084,10 @@ def get_llm_suggested_settings(file, num_chunks=1):
1084
 
1085
  prompt=f'''
1086
  <|start_header_id|>system<|end_header_id|>
1087
- You are an expert in information retrieval.
1088
  You know about strenghs and weaknesses of all models.
1089
 
1090
- Given the following text chunks from a document,
1091
  suggest optimal settings for an embedding-based search system. The settings should include:
1092
 
1093
  1. Embedding model type and name
@@ -1113,13 +1113,13 @@ def get_llm_suggested_settings(file, num_chunks=1):
1113
  "apply_preprocessing": True,
1114
  "optimize_vocab": True,
1115
  "apply_phonetic": False,
1116
- "phonetic_weight": 0.3 #
1117
  }}
1118
 
1119
  Provide your suggestions in a Python dictionary format.
1120
 
1121
  show me settings You SHOULD NOT include any other text in the response.
1122
- Fill out the seeting and chose usefull values.
1123
  Respect the users use cases and content snipet. Choose the setting based on the chunks
1124
 
1125
  <|eot_id|><|start_header_id|>user<|end_header_id|>
@@ -1142,13 +1142,13 @@ def get_llm_suggested_settings(file, num_chunks=1):
1142
  max_new_tokens=1900, # Control the length of the output,
1143
  truncation=True, # Enable truncation
1144
  )
1145
-
1146
  print(suggested_settings[0]['generated_text'])
1147
  # Safely parse the generated text to extract the dictionary
1148
  try:
1149
  # Using ast.literal_eval for safe parsing
1150
  settings_dict = ast.literal_eval(suggested_settings[0]['generated_text'])
1151
-
1152
  # Convert the settings to match the interface inputs
1153
  return {
1154
  "embedding_models": settings_dict["embedding_models"],
@@ -1388,7 +1388,11 @@ def launch_interface(debug=True):
1388
  )
1389
  ###
1390
 
1391
- with gr.Tab("Results"):
 
 
 
 
1392
  with gr.Row():
1393
  results_output = gr.DataFrame(label="Results")
1394
  stats_output = gr.DataFrame(label="Statistics")
 
354
 
355
  Returns:
356
  Expanded query string
357
+ """
358
  try:
359
  # Set device
360
  device = "cuda" if use_gpu and torch.cuda.is_available() else "cpu"
 
383
  Enhance the followinf search query with relevant terms.
384
 
385
  show me just the new term. You SHOULD NOT include any other text in the response.
386
+
387
  <|eot_id|><|start_header_id|>user<|end_header_id|>
388
  {query}
389
  <|eot_id|><|start_header_id|>assistant<|end_header_id|>
 
1084
 
1085
  prompt=f'''
1086
  <|start_header_id|>system<|end_header_id|>
1087
+ You are an expert in information retrieval.
1088
  You know about strenghs and weaknesses of all models.
1089
 
1090
+ Given the following text chunks from a document,
1091
  suggest optimal settings for an embedding-based search system. The settings should include:
1092
 
1093
  1. Embedding model type and name
 
1113
  "apply_preprocessing": True,
1114
  "optimize_vocab": True,
1115
  "apply_phonetic": False,
1116
+ "phonetic_weight": 0.3 #
1117
  }}
1118
 
1119
  Provide your suggestions in a Python dictionary format.
1120
 
1121
  show me settings You SHOULD NOT include any other text in the response.
1122
+ Fill out the seeting and chose usefull values.
1123
  Respect the users use cases and content snipet. Choose the setting based on the chunks
1124
 
1125
  <|eot_id|><|start_header_id|>user<|end_header_id|>
 
1142
  max_new_tokens=1900, # Control the length of the output,
1143
  truncation=True, # Enable truncation
1144
  )
1145
+
1146
  print(suggested_settings[0]['generated_text'])
1147
  # Safely parse the generated text to extract the dictionary
1148
  try:
1149
  # Using ast.literal_eval for safe parsing
1150
  settings_dict = ast.literal_eval(suggested_settings[0]['generated_text'])
1151
+
1152
  # Convert the settings to match the interface inputs
1153
  return {
1154
  "embedding_models": settings_dict["embedding_models"],
 
1388
  )
1389
  ###
1390
 
1391
+ with gr.Tab("Chat"):
1392
+ with gr.Row():
1393
+ chat_output =
1394
+ chat_input =
1395
+
1396
  with gr.Row():
1397
  results_output = gr.DataFrame(label="Results")
1398
  stats_output = gr.DataFrame(label="Statistics")