Chris4K commited on
Commit
1ea5254
·
verified ·
1 Parent(s): 5f5975a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -0
app.py CHANGED
@@ -189,18 +189,25 @@ def optimize_query(
189
  # Initialize the language model
190
  #llm = HuggingFacePipeline(pipeline(model=llm_model))
191
 
 
192
  # Create a temporary vector store for query optimization
193
  temp_vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
194
 
 
 
195
  # Create a retriever with the temporary vector store
196
  temp_retriever = get_retriever(temp_vector_store, search_type, {"k": top_k})
197
 
 
 
198
  # Initialize MultiQueryRetriever with the temporary retriever and the language model
199
  multi_query_retriever = MultiQueryRetriever.from_llm(
200
  retriever=temp_retriever,
201
  llm=llm
202
  )
203
 
 
 
204
  # Limit max time or set a timeout for LLM to avoid endless execution
205
  optimized_queries = multi_query_retriever.invoke(query, max_time=30) # Timeout in seconds
206
 
 
189
  # Initialize the language model
190
  #llm = HuggingFacePipeline(pipeline(model=llm_model))
191
 
192
+ print('---- optimize query ----')
193
  # Create a temporary vector store for query optimization
194
  temp_vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
195
 
196
+ print('---- optimize query 2 ----')
197
+
198
  # Create a retriever with the temporary vector store
199
  temp_retriever = get_retriever(temp_vector_store, search_type, {"k": top_k})
200
 
201
+ print('---- optimize query 3 ----')
202
+
203
  # Initialize MultiQueryRetriever with the temporary retriever and the language model
204
  multi_query_retriever = MultiQueryRetriever.from_llm(
205
  retriever=temp_retriever,
206
  llm=llm
207
  )
208
 
209
+ print('---- optimize query 4 ----')
210
+ #print(llm.invoke('Hello'))
211
  # Limit max time or set a timeout for LLM to avoid endless execution
212
  optimized_queries = multi_query_retriever.invoke(query, max_time=30) # Timeout in seconds
213