Update app.py
Browse files
app.py
CHANGED
@@ -283,6 +283,7 @@ def calculate_statistics(results, search_time, vector_store, num_tokens, embeddi
|
|
283 |
# Silhouette Score
|
284 |
if len(embeddings) > 2:
|
285 |
print('-----')
|
|
|
286 |
#stats["silhouette_score"] = silhouette_score(embeddings, range(len(embeddings)))
|
287 |
else:
|
288 |
stats["silhouette_score"] = "N/A"
|
@@ -292,7 +293,8 @@ def calculate_statistics(results, search_time, vector_store, num_tokens, embeddi
|
|
292 |
|
293 |
query_embedding = embedding_model.embed_query(query)
|
294 |
result_embeddings = [embedding_model.embed_query(doc.page_content) for doc in results]
|
295 |
-
similarities = [np.inner(query_embedding, emb)
|
|
|
296 |
rank_correlation, _ = spearmanr(similarities, range(len(similarities)))
|
297 |
stats["rank_correlation"] = rank_correlation
|
298 |
|
|
|
283 |
# Silhouette Score
|
284 |
if len(embeddings) > 2:
|
285 |
print('-----')
|
286 |
+
stats["silhouette_score"] = "N/A"
|
287 |
#stats["silhouette_score"] = silhouette_score(embeddings, range(len(embeddings)))
|
288 |
else:
|
289 |
stats["silhouette_score"] = "N/A"
|
|
|
293 |
|
294 |
query_embedding = embedding_model.embed_query(query)
|
295 |
result_embeddings = [embedding_model.embed_query(doc.page_content) for doc in results]
|
296 |
+
similarities = [np.inner(query_embedding, emb) for emb in result_embeddings]
|
297 |
+
#similarities = [np.inner(query_embedding, emb)[0] for emb in result_embeddings]
|
298 |
rank_correlation, _ = spearmanr(similarities, range(len(similarities)))
|
299 |
stats["rank_correlation"] = rank_correlation
|
300 |
|