|
import os |
|
import time |
|
import pdfplumber |
|
import docx |
|
import nltk |
|
import gradio as gr |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_community.embeddings import CohereEmbeddings |
|
from langchain_openai import OpenAIEmbeddings |
|
from langchain_community.vectorstores import FAISS, Chroma |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter, TokenTextSplitter |
|
from typing import List, Dict, Any |
|
import pandas as pd |
|
import numpy as np |
|
import re |
|
from nltk.corpus import stopwords |
|
from nltk.tokenize import word_tokenize |
|
from nltk.stem import SnowballStemmer |
|
import jellyfish |
|
from gensim.models import Word2Vec |
|
from gensim.models.fasttext import FastText |
|
from collections import Counter |
|
from tokenizers import Tokenizer, models |
|
from tokenizers.models import WordLevel |
|
from tokenizers.trainers import WordLevelTrainer |
|
from tokenizers.pre_tokenizers import Whitespace |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from sklearn.manifold import TSNE |
|
from sklearn.metrics import silhouette_score |
|
from scipy.stats import spearmanr |
|
from functools import lru_cache |
|
|
|
|
|
def download_nltk_resources(): |
|
resources = ['punkt', 'stopwords', 'snowball_data'] |
|
for resource in resources: |
|
try: |
|
nltk.download(resource, quiet=True) |
|
except Exception as e: |
|
print(f"Failed to download {resource}: {str(e)}") |
|
|
|
download_nltk_resources() |
|
|
|
FILES_DIR = './files' |
|
|
|
|
|
class ModelManager: |
|
def __init__(self): |
|
self.models = { |
|
'HuggingFace': { |
|
'e5-base-de': "danielheinz/e5-base-sts-en-de", |
|
'paraphrase-miniLM': "paraphrase-multilingual-MiniLM-L12-v2", |
|
'paraphrase-mpnet': "paraphrase-multilingual-mpnet-base-v2", |
|
'gte-large': "gte-large", |
|
'gbert-base': "gbert-base" |
|
}, |
|
'OpenAI': { |
|
'text-embedding-ada-002': "text-embedding-ada-002" |
|
}, |
|
'Cohere': { |
|
'embed-multilingual-v2.0': "embed-multilingual-v2.0" |
|
} |
|
} |
|
|
|
def add_model(self, provider, name, model_path): |
|
if provider not in self.models: |
|
self.models[provider] = {} |
|
self.models[provider][name] = model_path |
|
|
|
def remove_model(self, provider, name): |
|
if provider in self.models and name in self.models[provider]: |
|
del self.models[provider][name] |
|
|
|
def get_model(self, provider, name): |
|
return self.models.get(provider, {}).get(name) |
|
|
|
def list_models(self): |
|
return {provider: list(models.keys()) for provider, models in self.models.items()} |
|
|
|
model_manager = ModelManager() |
|
|
|
|
|
class FileHandler: |
|
@staticmethod |
|
def extract_text(file_path): |
|
ext = os.path.splitext(file_path)[-1].lower() |
|
if ext == '.pdf': |
|
return FileHandler._extract_from_pdf(file_path) |
|
elif ext == '.docx': |
|
return FileHandler._extract_from_docx(file_path) |
|
elif ext == '.txt': |
|
return FileHandler._extract_from_txt(file_path) |
|
else: |
|
raise ValueError(f"Unsupported file type: {ext}") |
|
|
|
@staticmethod |
|
def _extract_from_pdf(file_path): |
|
with pdfplumber.open(file_path) as pdf: |
|
return ' '.join([page.extract_text() for page in pdf.pages]) |
|
|
|
@staticmethod |
|
def _extract_from_docx(file_path): |
|
doc = docx.Document(file_path) |
|
return ' '.join([para.text for para in doc.paragraphs]) |
|
|
|
@staticmethod |
|
def _extract_from_txt(file_path): |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
return f.read() |
|
|
|
|
|
def simple_tokenize(text): |
|
return text.split() |
|
|
|
def preprocess_text(text, lang='german'): |
|
text = text.lower() |
|
text = re.sub(r'[^a-zA-Z\s]', '', text) |
|
|
|
try: |
|
tokens = word_tokenize(text, language=lang) |
|
except LookupError: |
|
print(f"Warning: NLTK punkt tokenizer for {lang} not found. Using simple tokenization.") |
|
tokens = simple_tokenize(text) |
|
|
|
try: |
|
stop_words = set(stopwords.words(lang)) |
|
except LookupError: |
|
print(f"Warning: Stopwords for {lang} not found. Skipping stopword removal.") |
|
stop_words = set() |
|
tokens = [token for token in tokens if token not in stop_words] |
|
|
|
try: |
|
stemmer = SnowballStemmer(lang) |
|
tokens = [stemmer.stem(token) for token in tokens] |
|
except ValueError: |
|
print(f"Warning: SnowballStemmer for {lang} not available. Skipping stemming.") |
|
|
|
return ' '.join(tokens) |
|
|
|
def phonetic_match(text, query, method='levenshtein_distance'): |
|
if method == 'levenshtein_distance': |
|
text_phonetic = jellyfish.soundex(text) |
|
|
|
query_phonetic = jellyfish.soundex(query) |
|
return jellyfish.levenshtein_distance(text_phonetic, query_phonetic) |
|
return 0 |
|
|
|
|
|
def create_custom_tokenizer(file_path): |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
text = f.read() |
|
|
|
tokenizer = Tokenizer(WordLevel(unk_token="[UNK]")) |
|
tokenizer.pre_tokenizer = Whitespace() |
|
|
|
trainer = WordLevelTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]) |
|
tokenizer.train_from_iterator([text], trainer) |
|
|
|
return tokenizer |
|
|
|
def custom_tokenize(text, tokenizer): |
|
return tokenizer.encode(text).tokens |
|
|
|
|
|
@lru_cache(maxsize=None) |
|
def get_embedding_model(model_type, model_name): |
|
model_path = model_manager.get_model(model_type, model_name) |
|
if model_type == 'HuggingFace': |
|
return HuggingFaceEmbeddings(model_name=model_path) |
|
elif model_type == 'OpenAI': |
|
return OpenAIEmbeddings(model=model_path) |
|
elif model_type == 'Cohere': |
|
return CohereEmbeddings(model=model_path) |
|
else: |
|
raise ValueError(f"Unsupported model type: {model_type}") |
|
|
|
def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators=None): |
|
if split_strategy == 'token': |
|
return TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size) |
|
elif split_strategy == 'recursive': |
|
return RecursiveCharacterTextSplitter( |
|
chunk_size=chunk_size, |
|
chunk_overlap=overlap_size, |
|
separators=custom_separators or ["\n\n", "\n", " ", ""] |
|
) |
|
else: |
|
raise ValueError(f"Unsupported split strategy: {split_strategy}") |
|
|
|
def get_vector_store(vector_store_type, chunks, embedding_model): |
|
|
|
chunks_tuple = tuple(chunks) |
|
|
|
|
|
return _create_vector_store(vector_store_type, chunks_tuple, embedding_model) |
|
|
|
|
|
def _create_vector_store(vector_store_type, chunks_tuple, embedding_model): |
|
|
|
chunks = list(chunks_tuple) |
|
|
|
if vector_store_type == 'FAISS': |
|
return FAISS.from_texts(chunks, embedding_model) |
|
elif vector_store_type == 'Chroma': |
|
return Chroma.from_texts(chunks, embedding_model) |
|
else: |
|
raise ValueError(f"Unsupported vector store type: {vector_store_type}") |
|
|
|
|
|
def get_retriever(vector_store, search_type, search_kwargs): |
|
if search_type == 'similarity': |
|
return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs) |
|
elif search_type == 'mmr': |
|
return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs) |
|
elif search_type == 'custom': |
|
|
|
pass |
|
else: |
|
raise ValueError(f"Unsupported search type: {search_type}") |
|
|
|
|
|
def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators, lang='german', custom_tokenizer_file=None): |
|
if file_path: |
|
text = FileHandler.extract_text(file_path) |
|
else: |
|
text = "" |
|
for file in os.listdir(FILES_DIR): |
|
file_path = os.path.join(FILES_DIR, file) |
|
text += FileHandler.extract_text(file_path) |
|
|
|
if custom_tokenizer_file: |
|
tokenizer = create_custom_tokenizer(custom_tokenizer_file) |
|
text = ' '.join(custom_tokenize(text, tokenizer)) |
|
else: |
|
text = preprocess_text(text, lang) |
|
|
|
text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators) |
|
chunks = text_splitter.split_text(text) |
|
|
|
embedding_model = get_embedding_model(model_type, model_name) |
|
|
|
return chunks, embedding_model, len(text.split()) |
|
|
|
def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k, lang='german', phonetic_weight=0.3): |
|
preprocessed_query = preprocess_text(query, lang) |
|
|
|
vector_store = get_vector_store(vector_store_type, chunks, embedding_model) |
|
retriever = get_retriever(vector_store, search_type, {"k": top_k}) |
|
|
|
start_time = time.time() |
|
results = retriever.invoke(preprocessed_query) |
|
|
|
def score_result(doc): |
|
similarity_score = vector_store.similarity_search_with_score(doc.page_content, k=1)[0][1] |
|
phonetic_score = phonetic_match(doc.page_content, query) |
|
return (1 - phonetic_weight) * similarity_score + phonetic_weight * phonetic_score |
|
|
|
results = sorted(results, key=score_result, reverse=True) |
|
end_time = time.time() |
|
|
|
|
|
embeddings = [] |
|
for doc in results: |
|
if hasattr(doc, 'embedding'): |
|
embeddings.append(doc.embedding) |
|
else: |
|
embeddings.append(None) |
|
|
|
|
|
results_df = pd.DataFrame({ |
|
'content': [doc.page_content for doc in results], |
|
'embedding': embeddings |
|
}) |
|
|
|
return results_df, end_time - start_time, vector_store, results |
|
|
|
|
|
def calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model, query, top_k): |
|
stats = { |
|
"num_results": len(results), |
|
|
|
"avg_content_length": np.mean([len(doc.page_content) for doc in results]) if results else 0, |
|
|
|
|
|
"search_time": search_time, |
|
"vector_store_size": vector_store._index.ntotal if hasattr(vector_store, '_index') else "N/A", |
|
"num_documents": len(vector_store.docstore._dict), |
|
"num_tokens": num_tokens, |
|
"embedding_vocab_size": embedding_model.client.get_vocab_size() if hasattr(embedding_model, 'client') and hasattr(embedding_model.client, 'get_vocab_size') else "N/A", |
|
"embedding_dimension": len(embedding_model.embed_query(query)), |
|
"top_k": top_k, |
|
} |
|
|
|
if len(results) > 1000: |
|
embeddings = [embedding_model.embed_query(doc.page_content) for doc in results] |
|
pairwise_similarities = np.inner(embeddings, embeddings) |
|
stats["result_diversity"] = 1 - np.mean(pairwise_similarities[np.triu_indices(len(embeddings), k=1)]) |
|
|
|
|
|
if len(embeddings) > 2: |
|
print('-----') |
|
|
|
stats["silhouette_score"] = silhouette_score(embeddings, range(len(embeddings))) |
|
else: |
|
stats["silhouette_score"] = "N/A" |
|
else: |
|
stats["result_diversity"] = "N/A" |
|
stats["silhouette_score"] = "N/A" |
|
|
|
query_embedding = embedding_model.embed_query(query) |
|
result_embeddings = [embedding_model.embed_query(doc.page_content) for doc in results] |
|
similarities = [np.inner(query_embedding, emb) for emb in result_embeddings] |
|
rank_correlation, _ = spearmanr(similarities, range(len(similarities))) |
|
stats["rank_correlation"] = rank_correlation |
|
|
|
return stats |
|
|
|
|
|
def visualize_results(results_df, stats_df): |
|
fig, axs = plt.subplots(2, 2, figsize=(20, 20)) |
|
|
|
sns.barplot(x='model', y='search_time', data=stats_df, ax=axs[0, 0]) |
|
axs[0, 0].set_title('Search Time by Model') |
|
axs[0, 0].set_xticklabels(axs[0, 0].get_xticklabels(), rotation=45, ha='right') |
|
|
|
sns.scatterplot(x='result_diversity', y='rank_correlation', hue='model', data=stats_df, ax=axs[0, 1]) |
|
axs[0, 1].set_title('Result Diversity vs. Rank Correlation') |
|
|
|
sns.boxplot(x='model', y='avg_content_length', data=stats_df, ax=axs[1, 0]) |
|
axs[1, 0].set_title('Distribution of Result Content Lengths') |
|
axs[1, 0].set_xticklabels(axs[1, 0].get_xticklabels(), rotation=45, ha='right') |
|
|
|
embeddings = np.array([embedding for embedding in results_df['embedding'] if isinstance(embedding, np.ndarray)]) |
|
if len(embeddings) > 1: |
|
tsne = TSNE(n_components=2, random_state=42) |
|
embeddings_2d = tsne.fit_transform(embeddings) |
|
|
|
sns.scatterplot(x=embeddings_2d[:, 0], y=embeddings_2d[:, 1], hue=results_df['model'][:len(embeddings)], ax=axs[1, 1]) |
|
axs[1, 1].set_title('t-SNE Visualization of Result Embeddings') |
|
else: |
|
axs[1, 1].text(0.5, 0.5, "Not enough data for t-SNE visualization", ha='center', va='center') |
|
|
|
plt.tight_layout() |
|
return fig |
|
|
|
def optimize_vocabulary(texts, vocab_size=10000, min_frequency=2): |
|
tokenizer = Tokenizer(models.BPE(unk_token="[UNK]")) |
|
|
|
|
|
word_freq = Counter(word for text in texts for word in text.split()) |
|
|
|
|
|
optimized_texts = [ |
|
' '.join(word for word in text.split() if word_freq[word] >= min_frequency) |
|
for text in texts |
|
] |
|
|
|
|
|
|
|
trainer = BpeTrainer(vocab_size=vocab_size, special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]) |
|
tokenizer.train_from_iterator(optimized_texts, trainer) |
|
|
|
return tokenizer, optimized_texts |
|
|
|
|
|
def compare_embeddings(file, query, model_types, model_names, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k, lang='german', use_custom_embedding=False, optimize_vocab=False, phonetic_weight=0.3, custom_tokenizer_file=None): |
|
all_results = [] |
|
all_stats = [] |
|
settings = { |
|
"split_strategy": split_strategy, |
|
"chunk_size": chunk_size, |
|
"overlap_size": overlap_size, |
|
"custom_separators": custom_separators, |
|
"vector_store_type": vector_store_type, |
|
"search_type": search_type, |
|
"top_k": top_k, |
|
"lang": lang, |
|
"use_custom_embedding": use_custom_embedding, |
|
"optimize_vocab": optimize_vocab, |
|
"phonetic_weight": phonetic_weight |
|
} |
|
|
|
for model_type, model_name in zip(model_types, model_names): |
|
|
|
chunks, embedding_model, num_tokens = process_files( |
|
file.name if file else None, |
|
model_type, |
|
model_name, |
|
split_strategy, |
|
chunk_size, |
|
overlap_size, |
|
custom_separators.split(',') if custom_separators else None, |
|
lang, |
|
custom_tokenizer_file |
|
) |
|
|
|
|
|
if use_custom_embedding: |
|
custom_model = create_custom_embedding(chunks) |
|
embedding_model = CustomEmbeddings(custom_model) |
|
|
|
|
|
if optimize_vocab: |
|
tokenizer, optimized_chunks = optimize_vocabulary(chunks) |
|
chunks = optimized_chunks |
|
|
|
|
|
results, search_time, vector_store, results_raw = search_embeddings( |
|
chunks, |
|
embedding_model, |
|
vector_store_type, |
|
search_type, |
|
query, |
|
top_k, |
|
lang, |
|
phonetic_weight |
|
) |
|
|
|
|
|
for doc in results_raw: |
|
print(doc) |
|
|
|
|
|
|
|
result_embeddings = [doc.metadata.get('embedding', None) for doc in results_raw] |
|
|
|
|
|
stats = calculate_statistics(results_raw, search_time, vector_store, num_tokens, embedding_model, query, top_k) |
|
stats["model"] = f"{model_type} - {model_name}" |
|
stats.update(settings) |
|
|
|
|
|
formatted_results = format_results(results_raw, stats) |
|
for i, result in enumerate(formatted_results): |
|
result['embedding'] = result_embeddings[i] |
|
|
|
all_results.extend(formatted_results) |
|
all_stats.append(stats) |
|
|
|
|
|
results_df = pd.DataFrame(all_results) |
|
stats_df = pd.DataFrame(all_stats) |
|
|
|
|
|
fig = visualize_results(results_df, stats_df) |
|
|
|
return results_df, stats_df, fig |
|
|
|
def format_results(results, stats): |
|
formatted_results = [] |
|
for doc in results: |
|
result = { |
|
"Model": stats["model"], |
|
"Content": doc.page_content, |
|
"Embedding": doc.embedding if hasattr(doc, 'embedding') else None, |
|
**doc.metadata, |
|
**{k: v for k, v in stats.items() if k not in ["model"]} |
|
} |
|
formatted_results.append(result) |
|
return formatted_results |
|
|
|
|
|
def launch_interface(share=True): |
|
iface = gr.Interface( |
|
fn=compare_embeddings, |
|
inputs=[ |
|
gr.File(label="Upload File (Optional)"), |
|
gr.Textbox(label="Search Query"), |
|
gr.CheckboxGroup(choices=list(model_manager.list_models().keys()) + ["Custom"], label="Embedding Model Types"), |
|
gr.CheckboxGroup(choices=[model for models in model_manager.list_models().values() for model in models] + ["custom_model"], label="Embedding Models"), |
|
gr.Radio(choices=["token", "recursive"], label="Split Strategy", value="recursive"), |
|
gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"), |
|
gr.Slider(0, 100, step=10, value=50, label="Overlap Size"), |
|
gr.Textbox(label="Custom Split Separators (comma-separated, optional)"), |
|
gr.Radio(choices=["FAISS", "Chroma"], label="Vector Store Type", value="FAISS"), |
|
gr.Radio(choices=["similarity", "mmr", "custom"], label="Search Type", value="similarity"), |
|
gr.Slider(1, 10, step=1, value=5, label="Top K"), |
|
gr.Dropdown(choices=["german", "english", "french"], label="Language", value="german"), |
|
gr.Checkbox(label="Use Custom Embedding", value=False), |
|
gr.Checkbox(label="Optimize Vocabulary", value=False), |
|
gr.Slider(0, 1, step=0.1, value=0.3, label="Phonetic Matching Weight"), |
|
gr.File(label="Custom Tokenizer File (Optional)") |
|
], |
|
outputs=[ |
|
gr.Dataframe(label="Results", interactive=False), |
|
gr.Dataframe(label="Statistics", interactive=False), |
|
gr.Plot(label="Visualizations") |
|
], |
|
title="Advanced Embedding Comparison Tool", |
|
description="Compare different embedding models and retrieval strategies with advanced preprocessing and phonetic matching" |
|
) |
|
|
|
tutorial_md = """ |
|
# Advanced Embedding Comparison Tool Tutorial |
|
|
|
This tool allows you to compare different embedding models and retrieval strategies for document search and similarity matching. |
|
|
|
## How to use: |
|
|
|
1. Upload a file (optional) or use the default files in the system. |
|
2. Enter a search query. |
|
3. Select one or more embedding model types and specific models. |
|
4. Choose a text splitting strategy and set chunk size and overlap. |
|
5. Select a vector store type and search type. |
|
6. Set the number of top results to retrieve. |
|
7. Choose the language of your documents. |
|
8. Optionally, use custom embeddings, optimize vocabulary, or adjust phonetic matching weight. |
|
9. If you have a custom tokenizer, upload the file. |
|
|
|
The tool will process your query and display results, statistics, and visualizations to help you compare the performance of different models and strategies. |
|
""" |
|
|
|
iface = gr.TabbedInterface( |
|
[iface, gr.Markdown(tutorial_md)], |
|
["Embedding Comparison", "Tutorial"] |
|
) |
|
|
|
iface.launch(share=share) |
|
|
|
if __name__ == "__main__": |
|
launch_interface() |