Events / app.py
Chris4K's picture
Update app.py
1832474 verified
raw
history blame contribute delete
14.8 kB
import gradio as gr
import requests
from bs4 import BeautifulSoup
import pytz
from datetime import datetime, timedelta
import logging
import traceback
from typing import List, Dict, Any
import hashlib
import icalendar
import uuid
import re
import json
import os
# Hugging Face imports
try:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
TRANSFORMERS_AVAILABLE = True # TODO change back to true to use local llm
except ImportError:
TRANSFORMERS_AVAILABLE = False
# Hugging Face Inference Client
from huggingface_hub import InferenceClient
class EventScraper:
def __init__(self, urls, timezone='Europe/Berlin'):
# Setup logging
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
# Timezone setup
self.timezone = pytz.timezone(timezone)
# URLs to scrape
self.urls = urls if isinstance(urls, list) else [urls]
# Event cache to prevent duplicates
self.event_cache = set()
# iCal calendar
self.calendar = icalendar.Calendar()
self.calendar.add('prodid', '-//Event Scraper//example.com//')
self.calendar.add('version', '2.0')
# Model and tokenizer will be loaded on first use
self.model = None
self.tokenizer = None
self.client = None
def setup_llm(self):
"""Setup Hugging Face LLM for event extraction"""
# Try local model first
if TRANSFORMERS_AVAILABLE:
try:
model_name = "meta-llama/Llama-3.2-1B-Instruct" # 3B is very slow on HF :(
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
return_dict_in_generate=False,
device_map='auto'
)
return
except Exception as local_err:
gr.Warning(f"Local model setup failed: {str(local_err)}")
# Fallback to Inference Client
try:
# Try to get Hugging Face token from environment
hf_token = os.getenv('HF_TOKEN')
# Setup Inference Client
if hf_token:
self.client = InferenceClient(
model="meta-llama/Llama-3.2-3B-Instruct",
token=hf_token
)
else:
# Public model access without token
self.client = InferenceClient(
model="meta-llama/Llama-3.2-3B-Instruct"
)
except Exception as e:
gr.Warning(f"Inference Client setup error: {str(e)}")
raise
def generate_with_model(self, prompt):
"""Generate text using either local model or inference client"""
print("------ PROMPT ------------")
print(prompt)
print("------ PROMPT ------------")
if self.model and self.tokenizer:
# Use local model
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
outputs = self.model.generate(
inputs.input_ids,
max_new_tokens=12000,
do_sample=True,
temperature=0.9
)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
elif self.client:
# Use Inference Client
return self.client.text_generation(
prompt,
max_new_tokens=2000,
temperature=0.9
)
else:
raise ValueError("No model or client available for text generation")
def fetch_webpage_content(self, url):
"""Fetch webpage content"""
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
return response.text
except Exception as e:
gr.Warning(f"Error fetching {url}: {str(e)}")
return ""
def extract_text_from_html(self, html_content):
"""Extract readable text from HTML"""
soup = BeautifulSoup(html_content, 'html.parser')
for script in soup(["script", "style", "nav", "header", "footer"]):
script.decompose()
text = soup.get_text(separator=' ', strip=True)
return ' '.join(text.split()[:2000])
def generate_event_extraction_prompt(self, text):
"""Create prompt for LLM to extract event details"""
prompt=f'''
<|start_header_id|>system<|end_header_id|>
<|eot_id|><|start_header_id|>user<|end_header_id|>
You are an event extraction assistant.
Find and extract all events from the following text.
For each event, provide:
- Exact event name
- Date (DD.MM.YYYY)
- Time (HH:MM if available)
- Location
- Short description
Important: Extract ALL possible events.
Text to analyze:
{text}
Output ONLY a JSON list of events like this - Response Format:
[
{{
"name": "Event Name",
"date": "07.12.2024",
"time": "19:00",
"location": "Event Location",
"description": "Event details"
}}
]
If NO events are found, return an empty list [].
Only return the json. nothing else. no comments.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
'''
return prompt
def parse_llm_response(self, response):
"""Parse LLM's text response into structured events"""
try:
# Clean the response and handle nested lists
response = response.strip()
# Try parsing as JSON, handling potential nested structures
def flatten_events(data):
if isinstance(data, list):
flattened = []
for item in data:
if isinstance(item, list):
flattened.extend(flatten_events(item))
elif isinstance(item, dict):
flattened.append(item)
return flattened
return []
try:
# First, attempt direct JSON parsing
events = json.loads(response)
events = flatten_events(events)
except json.JSONDecodeError:
# If direct parsing fails, try extracting JSON
import re
json_match = re.search(r'\[.*\]', response, re.DOTALL | re.MULTILINE)
if json_match:
try:
events = json.loads(json_match.group(0))
events = flatten_events(events)
except json.JSONDecodeError:
events = []
else:
events = []
# Clean and validate events
cleaned_events = []
for event in events:
# Ensure each event has at least a name
if event.get('name'):
# Set default values if missing
event.setdefault('date', '')
event.setdefault('time', '')
event.setdefault('location', '')
event.setdefault('description', '')
cleaned_events.append(event)
return cleaned_events
except Exception as e:
gr.Warning(f"Parsing error: {str(e)}")
return []
def scrape_events(self):
"""Main method to scrape events from all URLs"""
# Ensure LLM is set up
self.setup_llm()
all_events = []
for url in self.urls:
try:
# Fetch webpage
html_content = self.fetch_webpage_content(url)
# Extract readable text
text_content = self.extract_text_from_html(html_content)
# Generate prompt
prompt = self.generate_event_extraction_prompt(text_content)
# Generate response
response = self.generate_with_model(prompt)
print("------ response ------------")
print(response)
print("------ response ------------")
# Parse events
parsed_events = self.parse_llm_response(response)
# Deduplicate and add
for event in parsed_events:
event_hash = hashlib.md5(str(event).encode()).hexdigest()
if event_hash not in self.event_cache:
self.event_cache.add(event_hash)
all_events.append(event)
# Create and add iCal event
try:
ical_event = self.create_ical_event(event)
self.calendar.add_component(ical_event)
except Exception as ical_error:
gr.Warning(f"iCal creation error: {str(ical_error)}")
except Exception as e:
gr.Warning(f"Error processing {url}: {str(e)}")
return all_events
def create_ical_event(self, event):
"""Convert event to iCal format"""
ical_event = icalendar.Event()
# Set unique identifier
ical_event.add('uid', str(uuid.uuid4()))
# Add summary (name)
ical_event.add('summary', event.get('name', 'Unnamed Event'))
# Add description
ical_event.add('description', event.get('description', ''))
# Add location
if event.get('location'):
ical_event.add('location', event['location'])
# Handle date and time
try:
# Parse date
if event.get('date'):
try:
event_date = datetime.strptime(event['date'], '%d.%m.%Y').date()
# Parse time if available
event_time = datetime.strptime(event.get('time', '00:00'), '%H:%M').time() if event.get('time') else datetime.min.time()
# Combine date and time
event_datetime = datetime.combine(event_date, event_time)
# Localize the datetime to the specified timezone
localized_datetime = self.timezone.localize(event_datetime)
# For all-day events, set to start at midnight and end just before midnight the next day
if event_time == datetime.min.time():
start_datetime = localized_datetime.replace(hour=0, minute=0, second=0)
end_datetime = (start_datetime + timedelta(days=1)).replace(hour=23, minute=59, second=59)
# Add properties for all-day event
ical_event.add('dtstart', start_datetime.date())
ical_event.add('dtend', end_datetime.date())
ical_event.add('x-microsoft-cdo-alldayevent', 'TRUE')
else:
# For events with specific time, set 1-hour duration if not specified
end_datetime = localized_datetime + timedelta(hours=1)
# Use TZID format
ical_event['dtstart'] = icalendar.prop.vDDDTypes(localized_datetime)
ical_event['dtstart'].params['TZID'] = 'Europe/Berlin'
ical_event['dtend'] = icalendar.prop.vDDDTypes(end_datetime)
ical_event['dtend'].params['TZID'] = 'Europe/Berlin'
except ValueError as date_err:
gr.Warning(f"Date parsing error: {date_err}")
except Exception as e:
gr.Warning(f"iCal event creation error: {str(e)}")
return ical_event
def get_ical_string(self):
"""Return iCal as a string"""
return self.calendar.to_ical().decode('utf-8')
def scrape_events_with_urls(urls):
"""Wrapper function for Gradio interface"""
# Split URLs by newline or comma
url_list = [url.strip() for url in re.split(r'[\n,]+', urls) if url.strip()]
if not url_list:
gr.Warning("Please provide at least one valid URL.")
return "", ""
try:
# Initialize scraper
scraper = EventScraper(url_list)
# Scrape events
events = scraper.scrape_events()
# Prepare events output
events_str = json.dumps(events, indent=2)
# Get iCal string
ical_string = scraper.get_ical_string()
return events_str, ical_string
except Exception as e:
gr.Warning(f"Error in event scraping: {str(e)}")
return "", ""
# Create Gradio Interface
def create_gradio_app():
with gr.Blocks() as demo:
gr.Markdown("# Event Scraper ๐Ÿ—“๏ธ")
gr.Markdown("Scrape events from web pages using an AI-powered event extraction tool.")
with gr.Row():
with gr.Column():
url_input = gr.Textbox(
label="Enter URLs (comma or newline separated)",
placeholder="https://example.com/events\nhttps://another-site.com/calendar"
)
scrape_btn = gr.Button("Scrape Events", variant="primary")
with gr.Row():
with gr.Column():
events_output = gr.Textbox(label="Extracted Events (JSON)", lines=10)
with gr.Column():
ical_output = gr.Textbox(label="iCal Export", lines=10)
scrape_btn.click(
fn=scrape_events_with_urls,
inputs=url_input,
outputs=[events_output, ical_output]
)
gr.Markdown("**Note:** Requires an internet connection and may take a few minutes to process.")
gr.Markdown("Set HF_TOKEN environment variable for authenticated access.")
return demo
# Launch the app
if __name__ == "__main__":
demo = create_gradio_app()
demo.launch()