AioMedica2 / helper.py
chris1nexus
First commit
54660f7
#!/usr/bin/env python
# coding: utf-8
from __future__ import absolute_import, division, print_function
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import transforms
from utils.metrics import ConfusionMatrix
from PIL import Image
import os
# torch.cuda.synchronize()
# torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
def collate(batch):
image = [ b['image'] for b in batch ] # w, h
label = [ b['label'] for b in batch ]
id = [ b['id'] for b in batch ]
adj_s = [ b['adj_s'] for b in batch ]
return {'image': image, 'label': label, 'id': id, 'adj_s': adj_s}
def preparefeatureLabel(batch_graph, batch_label, batch_adjs, device='cpu'):
batch_size = len(batch_graph)
labels = torch.LongTensor(batch_size)
max_node_num = 0
for i in range(batch_size):
labels[i] = batch_label[i]
max_node_num = max(max_node_num, batch_graph[i].shape[0])
masks = torch.zeros(batch_size, max_node_num)
adjs = torch.zeros(batch_size, max_node_num, max_node_num)
batch_node_feat = torch.zeros(batch_size, max_node_num, 512)
for i in range(batch_size):
cur_node_num = batch_graph[i].shape[0]
#node attribute feature
tmp_node_fea = batch_graph[i]
batch_node_feat[i, 0:cur_node_num] = tmp_node_fea
#adjs
adjs[i, 0:cur_node_num, 0:cur_node_num] = batch_adjs[i]
#masks
masks[i,0:cur_node_num] = 1
node_feat = batch_node_feat.to(device)
labels = labels.to(device)
adjs = adjs.to(device)
masks = masks.to(device)
return node_feat, labels, adjs, masks
class Trainer(object):
def __init__(self, n_class):
self.metrics = ConfusionMatrix(n_class)
def get_scores(self):
acc = self.metrics.get_scores()
return acc
def reset_metrics(self):
self.metrics.reset()
def plot_cm(self):
self.metrics.plotcm()
def train(self, sample, model):
node_feat, labels, adjs, masks = preparefeatureLabel(sample['image'], sample['label'], sample['adj_s'])
pred,labels,loss = model.forward(node_feat, labels, adjs, masks)
return pred,labels,loss
class Evaluator(object):
def __init__(self, n_class):
self.metrics = ConfusionMatrix(n_class)
def get_scores(self):
acc = self.metrics.get_scores()
return acc
def reset_metrics(self):
self.metrics.reset()
def plot_cm(self):
self.metrics.plotcm()
def eval_test(self, sample, model, graphcam_flag=False):
node_feat, labels, adjs, masks = preparefeatureLabel(sample['image'], sample['label'], sample['adj_s'])
if not graphcam_flag:
with torch.no_grad():
pred,labels,loss = model.forward(node_feat, labels, adjs, masks)
else:
torch.set_grad_enabled(True)
pred,labels,loss= model.forward(node_feat, labels, adjs, masks, graphcam_flag=graphcam_flag)
return pred,labels,loss