|
import torch |
|
from models.resnet_simclr import ResNetSimCLR |
|
from torch.utils.tensorboard import SummaryWriter |
|
import torch.nn.functional as F |
|
from loss.nt_xent import NTXentLoss |
|
import os |
|
import shutil |
|
import sys |
|
|
|
apex_support = False |
|
try: |
|
sys.path.append('./apex') |
|
from apex import amp |
|
|
|
apex_support = True |
|
except: |
|
print("Please install apex for mixed precision training from: https://github.com/NVIDIA/apex") |
|
apex_support = False |
|
|
|
import numpy as np |
|
|
|
torch.manual_seed(0) |
|
|
|
|
|
def _save_config_file(model_checkpoints_folder): |
|
if not os.path.exists(model_checkpoints_folder): |
|
os.makedirs(model_checkpoints_folder) |
|
shutil.copy('./config.yaml', os.path.join(model_checkpoints_folder, 'config.yaml')) |
|
|
|
|
|
class SimCLR(object): |
|
|
|
def __init__(self, dataset, config, args=None): |
|
self.config = config |
|
self.device = self._get_device() |
|
self.writer = SummaryWriter() |
|
self.dataset = dataset |
|
self.nt_xent_criterion = NTXentLoss(self.device, config['batch_size'], **config['loss']) |
|
self.args = args |
|
def _get_device(self): |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
print("Running on:", device) |
|
return device |
|
|
|
def _step(self, model, xis, xjs, n_iter): |
|
|
|
|
|
ris, zis = model(xis) |
|
|
|
|
|
rjs, zjs = model(xjs) |
|
|
|
|
|
zis = F.normalize(zis, dim=1) |
|
zjs = F.normalize(zjs, dim=1) |
|
|
|
loss = self.nt_xent_criterion(zis, zjs) |
|
return loss |
|
|
|
def train(self): |
|
|
|
train_loader, valid_loader = self.dataset.get_data_loaders() |
|
|
|
model = ResNetSimCLR(**self.config["model"]) |
|
if self.config['n_gpu'] > 1: |
|
model = torch.nn.DataParallel(model, device_ids=eval(self.config['gpu_ids'])) |
|
model = self._load_pre_trained_weights(model) |
|
model = model.to(self.device) |
|
|
|
|
|
optimizer = torch.optim.Adam(model.parameters(), 1e-5, weight_decay=eval(self.config['weight_decay'])) |
|
|
|
|
|
|
|
|
|
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=self.config['epochs'], eta_min=0, |
|
last_epoch=-1) |
|
|
|
|
|
if apex_support and self.config['fp16_precision']: |
|
model, optimizer = amp.initialize(model, optimizer, |
|
opt_level='O2', |
|
keep_batchnorm_fp32=True) |
|
|
|
if self.args is None: |
|
model_checkpoints_folder = os.path.join(self.writer.log_dir, 'checkpoints') |
|
else: |
|
model_checkpoints_folder = self.args.dest_weights |
|
model_checkpoints_folder = os.path.dirname(model_checkpoints_folder) |
|
|
|
_save_config_file(model_checkpoints_folder) |
|
|
|
n_iter = 0 |
|
valid_n_iter = 0 |
|
best_valid_loss = np.inf |
|
|
|
for epoch_counter in range(self.config['epochs']): |
|
for (xis, xjs) in train_loader: |
|
optimizer.zero_grad() |
|
xis = xis.to(self.device) |
|
xjs = xjs.to(self.device) |
|
|
|
loss = self._step(model, xis, xjs, n_iter) |
|
|
|
if n_iter % self.config['log_every_n_steps'] == 0: |
|
self.writer.add_scalar('train_loss', loss, global_step=n_iter) |
|
print("[%d/%d] step: %d train_loss: %.3f" % (epoch_counter, self.config['epochs'], n_iter, loss)) |
|
|
|
if apex_support and self.config['fp16_precision']: |
|
with amp.scale_loss(loss, optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
else: |
|
loss.backward() |
|
|
|
optimizer.step() |
|
n_iter += 1 |
|
|
|
|
|
if epoch_counter % self.config['eval_every_n_epochs'] == 0: |
|
valid_loss = self._validate(model, valid_loader) |
|
print("[%d/%d] val_loss: %.3f" % (epoch_counter, self.config['epochs'], valid_loss)) |
|
if valid_loss < best_valid_loss: |
|
|
|
best_valid_loss = valid_loss |
|
torch.save(model.state_dict(), os.path.join(model_checkpoints_folder, 'model.pth')) |
|
print('saved') |
|
|
|
self.writer.add_scalar('validation_loss', valid_loss, global_step=valid_n_iter) |
|
valid_n_iter += 1 |
|
|
|
|
|
if epoch_counter >= 10: |
|
scheduler.step() |
|
self.writer.add_scalar('cosine_lr_decay', scheduler.get_lr()[0], global_step=n_iter) |
|
|
|
def _load_pre_trained_weights(self, model): |
|
try: |
|
checkpoints_folder = os.path.join('./runs', self.config['fine_tune_from'], 'checkpoints') |
|
state_dict = torch.load(os.path.join(checkpoints_folder, 'model.pth')) |
|
model.load_state_dict(state_dict) |
|
print("Loaded pre-trained model with success.") |
|
except FileNotFoundError: |
|
print("Pre-trained weights not found. Training from scratch.") |
|
|
|
return model |
|
|
|
def _validate(self, model, valid_loader): |
|
|
|
|
|
with torch.no_grad(): |
|
model.eval() |
|
|
|
valid_loss = 0.0 |
|
counter = 0 |
|
|
|
for (xis, xjs) in valid_loader: |
|
xis = xis.to(self.device) |
|
xjs = xjs.to(self.device) |
|
|
|
loss = self._step(model, xis, xjs, counter) |
|
valid_loss += loss.item() |
|
counter += 1 |
|
valid_loss /= counter |
|
model.train() |
|
return valid_loss |
|
|