chris1nexus
First commit
d60982d
raw
history blame
6.09 kB
import torch
from models.resnet_simclr import ResNetSimCLR
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
from loss.nt_xent import NTXentLoss
import os
import shutil
import sys
apex_support = False
try:
sys.path.append('./apex')
from apex import amp
apex_support = True
except:
print("Please install apex for mixed precision training from: https://github.com/NVIDIA/apex")
apex_support = False
import numpy as np
torch.manual_seed(0)
def _save_config_file(model_checkpoints_folder):
if not os.path.exists(model_checkpoints_folder):
os.makedirs(model_checkpoints_folder)
shutil.copy('./config.yaml', os.path.join(model_checkpoints_folder, 'config.yaml'))
class SimCLR(object):
def __init__(self, dataset, config, args=None):
self.config = config
self.device = self._get_device()
self.writer = SummaryWriter()
self.dataset = dataset
self.nt_xent_criterion = NTXentLoss(self.device, config['batch_size'], **config['loss'])
self.args = args
def _get_device(self):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Running on:", device)
return device
def _step(self, model, xis, xjs, n_iter):
# get the representations and the projections
ris, zis = model(xis) # [N,C]
# get the representations and the projections
rjs, zjs = model(xjs) # [N,C]
# normalize projection feature vectors
zis = F.normalize(zis, dim=1)
zjs = F.normalize(zjs, dim=1)
loss = self.nt_xent_criterion(zis, zjs)
return loss
def train(self):
train_loader, valid_loader = self.dataset.get_data_loaders()
model = ResNetSimCLR(**self.config["model"])# .to(self.device)
if self.config['n_gpu'] > 1:
model = torch.nn.DataParallel(model, device_ids=eval(self.config['gpu_ids']))
model = self._load_pre_trained_weights(model)
model = model.to(self.device)
optimizer = torch.optim.Adam(model.parameters(), 1e-5, weight_decay=eval(self.config['weight_decay']))
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=len(train_loader), eta_min=0,
# last_epoch=-1)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=self.config['epochs'], eta_min=0,
last_epoch=-1)
if apex_support and self.config['fp16_precision']:
model, optimizer = amp.initialize(model, optimizer,
opt_level='O2',
keep_batchnorm_fp32=True)
if self.args is None:
model_checkpoints_folder = os.path.join(self.writer.log_dir, 'checkpoints')
else:
model_checkpoints_folder = self.args.dest_weights#os.environ['FEATURE_EXTRACTOR_WEIGHT_PATH']
model_checkpoints_folder = os.path.dirname(model_checkpoints_folder)
# save config file
_save_config_file(model_checkpoints_folder)
n_iter = 0
valid_n_iter = 0
best_valid_loss = np.inf
for epoch_counter in range(self.config['epochs']):
for (xis, xjs) in train_loader:
optimizer.zero_grad()
xis = xis.to(self.device)
xjs = xjs.to(self.device)
loss = self._step(model, xis, xjs, n_iter)
if n_iter % self.config['log_every_n_steps'] == 0:
self.writer.add_scalar('train_loss', loss, global_step=n_iter)
print("[%d/%d] step: %d train_loss: %.3f" % (epoch_counter, self.config['epochs'], n_iter, loss))
if apex_support and self.config['fp16_precision']:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
n_iter += 1
# validate the model if requested
if epoch_counter % self.config['eval_every_n_epochs'] == 0:
valid_loss = self._validate(model, valid_loader)
print("[%d/%d] val_loss: %.3f" % (epoch_counter, self.config['epochs'], valid_loss))
if valid_loss < best_valid_loss:
# save the model weights
best_valid_loss = valid_loss
torch.save(model.state_dict(), os.path.join(model_checkpoints_folder, 'model.pth'))
print('saved')
self.writer.add_scalar('validation_loss', valid_loss, global_step=valid_n_iter)
valid_n_iter += 1
# warmup for the first 10 epochs
if epoch_counter >= 10:
scheduler.step()
self.writer.add_scalar('cosine_lr_decay', scheduler.get_lr()[0], global_step=n_iter)
def _load_pre_trained_weights(self, model):
try:
checkpoints_folder = os.path.join('./runs', self.config['fine_tune_from'], 'checkpoints')
state_dict = torch.load(os.path.join(checkpoints_folder, 'model.pth'))
model.load_state_dict(state_dict)
print("Loaded pre-trained model with success.")
except FileNotFoundError:
print("Pre-trained weights not found. Training from scratch.")
return model
def _validate(self, model, valid_loader):
# validation steps
with torch.no_grad():
model.eval()
valid_loss = 0.0
counter = 0
for (xis, xjs) in valid_loader:
xis = xis.to(self.device)
xjs = xjs.to(self.device)
loss = self._step(model, xis, xjs, counter)
valid_loss += loss.item()
counter += 1
valid_loss /= counter
model.train()
return valid_loss