Spaces:
Sleeping
Sleeping
Mikhaylov Alexey
commited on
Commit
·
d4adb6a
1
Parent(s):
8b2dd2a
memory cache mask
Browse files
app.py
CHANGED
@@ -8,12 +8,23 @@ import os
|
|
8 |
from scipy import ndimage
|
9 |
# from dotenv import load_dotenv
|
10 |
import numpy as np
|
|
|
|
|
11 |
|
12 |
# load_dotenv()
|
13 |
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
def get_circle_footprint(size):
|
@@ -22,7 +33,8 @@ def get_circle_footprint(size):
|
|
22 |
return fp
|
23 |
|
24 |
|
25 |
-
def
|
|
|
26 |
response = requests.post(
|
27 |
'https://api.remove.bg/v1.0/removebg',
|
28 |
files={'image_file': open(img_path, 'rb')},
|
@@ -34,39 +46,67 @@ def test(prompt, img_path, mask_margin):
|
|
34 |
)
|
35 |
if response.status_code == requests.codes.ok:
|
36 |
zipFile = zipfile.ZipFile(io.BytesIO(response.content))
|
37 |
-
|
38 |
-
|
39 |
-
alpha= maskIm.getchannel(0)
|
40 |
-
if mask_margin > 0:
|
41 |
-
inflated_alpha = ndimage.maximum_filter(input=np.array(alpha), footprint=get_circle_footprint(mask_margin))
|
42 |
-
alpha = Image.fromarray(np.uint8(inflated_alpha))
|
43 |
-
maskIm.paste((255),[0,0,maskIm.size[0],maskIm.size[1]])
|
44 |
-
maskIm.putalpha(alpha)
|
45 |
-
|
46 |
-
maskFile = io.BytesIO()
|
47 |
-
maskIm.save(maskFile, format='PNG')
|
48 |
-
maskFile.seek(0)
|
49 |
-
|
50 |
-
response = openai.Image.create_edit(
|
51 |
-
image=open(img_path, "rb"),
|
52 |
-
mask=maskFile,
|
53 |
-
prompt=prompt,
|
54 |
-
n=1,
|
55 |
-
size="512x512"
|
56 |
-
)
|
57 |
-
return response['data'][0]['url']
|
58 |
-
|
59 |
-
# with open('no-bg.zip', 'wb') as out:
|
60 |
-
# out.write(response.content)
|
61 |
else:
|
62 |
print("Error:", response.status_code, response.text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
|
|
|
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
67 |
-
demo = gr.Interface(
|
68 |
'text',
|
69 |
-
gr.Image(type='filepath', shape=(500,500), label='image'),
|
70 |
gr.Slider(minimum=0, maximum=10, value=5, step=1, label="mask margin")
|
71 |
], outputs=["image"])
|
72 |
|
|
|
8 |
from scipy import ndimage
|
9 |
# from dotenv import load_dotenv
|
10 |
import numpy as np
|
11 |
+
import hashlib
|
12 |
+
import queue
|
13 |
|
14 |
# load_dotenv()
|
15 |
|
16 |
|
17 |
+
cache = dict()
|
18 |
+
que = queue.Queue(30)
|
19 |
+
|
20 |
+
|
21 |
+
def save_to_memory_cache(key, file):
|
22 |
+
print('save mask')
|
23 |
+
cache[key] = file
|
24 |
+
que.put(key)
|
25 |
+
if que.full():
|
26 |
+
rkey = que.get()
|
27 |
+
del cache[rkey]
|
28 |
|
29 |
|
30 |
def get_circle_footprint(size):
|
|
|
33 |
return fp
|
34 |
|
35 |
|
36 |
+
def request_mask(img_path):
|
37 |
+
removebg_api_key = os.getenv('REMOVEBG_API_KEY')
|
38 |
response = requests.post(
|
39 |
'https://api.remove.bg/v1.0/removebg',
|
40 |
files={'image_file': open(img_path, 'rb')},
|
|
|
46 |
)
|
47 |
if response.status_code == requests.codes.ok:
|
48 |
zipFile = zipfile.ZipFile(io.BytesIO(response.content))
|
49 |
+
maskImFile = zipFile.read('alpha.png')
|
50 |
+
return maskImFile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
else:
|
52 |
print("Error:", response.status_code, response.text)
|
53 |
+
return None
|
54 |
+
|
55 |
+
|
56 |
+
def get_file_hash(path):
|
57 |
+
with open(path, 'rb') as inputfile:
|
58 |
+
fh = hashlib.sha256()
|
59 |
+
fb = inputfile.read(65536)
|
60 |
+
while len(fb) > 0:
|
61 |
+
fh.update(fb)
|
62 |
+
fb = inputfile.read(65536)
|
63 |
+
return fh.hexdigest()
|
64 |
+
|
65 |
+
|
66 |
+
def process_image(prompt, img_path, mask_margin):
|
67 |
+
openai.api_key = os.getenv('OPENAI_API_KEY')
|
68 |
|
69 |
+
hsh = get_file_hash(img_path)
|
70 |
+
print('hash',hsh)
|
71 |
|
72 |
+
maskImFile = None
|
73 |
+
if hsh in cache:
|
74 |
+
maskImFile = cache[hsh]
|
75 |
+
else:
|
76 |
+
maskImFile = request_mask(img_path)
|
77 |
+
if maskImFile != None:
|
78 |
+
save_to_memory_cache(hsh, maskImFile)
|
79 |
+
else:
|
80 |
+
print('no mask received')
|
81 |
+
return 'https://i.imgur.com/DUd0OWN.png'
|
82 |
+
|
83 |
+
maskIm = Image.open(io.BytesIO(maskImFile))
|
84 |
+
|
85 |
+
alpha = maskIm.getchannel(0)
|
86 |
+
if mask_margin > 0:
|
87 |
+
inflated_alpha = ndimage.maximum_filter(input=np.array(
|
88 |
+
alpha), footprint=get_circle_footprint(mask_margin))
|
89 |
+
alpha = Image.fromarray(np.uint8(inflated_alpha))
|
90 |
+
maskIm.paste((255), [0, 0, maskIm.size[0], maskIm.size[1]])
|
91 |
+
maskIm.putalpha(alpha)
|
92 |
+
|
93 |
+
maskFile = io.BytesIO()
|
94 |
+
maskIm.save(maskFile, format='PNG')
|
95 |
+
maskFile.seek(0)
|
96 |
+
|
97 |
+
response = openai.Image.create_edit(
|
98 |
+
image=open(img_path, "rb"),
|
99 |
+
mask=maskFile,
|
100 |
+
prompt=prompt,
|
101 |
+
n=1,
|
102 |
+
size="512x512"
|
103 |
+
)
|
104 |
+
return response['data'][0]['url']
|
105 |
|
106 |
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
107 |
+
demo = gr.Interface(process_image, inputs=[
|
108 |
'text',
|
109 |
+
gr.Image(type='filepath', shape=(500, 500), label='image'),
|
110 |
gr.Slider(minimum=0, maximum=10, value=5, step=1, label="mask margin")
|
111 |
], outputs=["image"])
|
112 |
|