Spaces:
Runtime error
Runtime error
Commit
·
9288345
1
Parent(s):
c11261f
deploy
Browse files- data/sms_process_data_main.xlsx +0 -0
- main.py +1 -1
- routes/sms_router.py +15 -11
- schemas/schema.py +8 -1
- service/embedded_service.py +1 -1
- service/prediction_service.py +16 -0
- service/train_model.py +25 -0
data/sms_process_data_main.xlsx
ADDED
|
Binary file (42.2 kB). View file
|
|
|
main.py
CHANGED
|
@@ -10,4 +10,4 @@ app.include_router(sms_router)
|
|
| 10 |
@app.get("/")
|
| 11 |
def home():
|
| 12 |
|
| 13 |
-
return {"message": "Welcome to embedding sms API, use /docs to
|
|
|
|
| 10 |
@app.get("/")
|
| 11 |
def home():
|
| 12 |
|
| 13 |
+
return {"message": "Welcome to embedding sms API, use /docs to test endpoints"}
|
routes/sms_router.py
CHANGED
|
@@ -1,43 +1,47 @@
|
|
| 1 |
from fastapi import APIRouter, HTTPException
|
| 2 |
-
from schemas.schema import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from service.embedded_service import generate_embeddings
|
| 4 |
-
|
|
|
|
| 5 |
|
| 6 |
# Initialize Router
|
| 7 |
router = APIRouter()
|
| 8 |
|
| 9 |
@router.post("/get_embeddings/", response_model=EmbeddingResponse)
|
| 10 |
async def get_embeddings(sms_request: SMSRequest):
|
| 11 |
-
# Check if the input list is not empty
|
| 12 |
if not sms_request.messages:
|
| 13 |
raise HTTPException(status_code=400, detail="No messages provided.")
|
| 14 |
|
| 15 |
-
# Generate embeddings
|
| 16 |
embeddings = generate_embeddings(sms_request.messages)
|
| 17 |
|
| 18 |
-
# Check if embeddings are generated and are in the correct format
|
| 19 |
if not embeddings or not all(isinstance(emb, list) for emb in embeddings):
|
| 20 |
raise HTTPException(status_code=500, detail="Failed to generate embeddings.")
|
| 21 |
|
| 22 |
-
# Get the dimensions from the first embedding (assuming all are the same)
|
| 23 |
dimensions = len(embeddings[0]) if embeddings else 0
|
| 24 |
|
| 25 |
-
# Return the response as per the EmbeddingResponse model
|
| 26 |
return EmbeddingResponse(dimensions=dimensions, embeddings=embeddings)
|
| 27 |
|
| 28 |
@router.post("/calculate_similarity/", response_model=SimilarityResponse)
|
| 29 |
async def calculate_similarity(similarity_request: SimilarityRequest):
|
| 30 |
-
# Get embeddings for both messages
|
| 31 |
embeddings = generate_embeddings([similarity_request.message1, similarity_request.message2])
|
| 32 |
|
| 33 |
-
# Check if embeddings are generated for both messages
|
| 34 |
if len(embeddings) != 2:
|
| 35 |
raise HTTPException(status_code=500, detail="Failed to generate embeddings for both messages.")
|
| 36 |
|
| 37 |
-
# Calculate cosine similarity
|
| 38 |
vec1 = np.array(embeddings[0])
|
| 39 |
vec2 = np.array(embeddings[1])
|
| 40 |
cosine_similarity = np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
|
| 41 |
|
| 42 |
-
# Return response using the SimilarityResponse model
|
| 43 |
return SimilarityResponse(similarity_score=float(cosine_similarity))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import APIRouter, HTTPException
|
| 2 |
+
from schemas.schema import (
|
| 3 |
+
SMSRequest,
|
| 4 |
+
EmbeddingResponse,
|
| 5 |
+
SimilarityRequest,
|
| 6 |
+
SimilarityResponse,
|
| 7 |
+
PredictionRequest,
|
| 8 |
+
PredictionResponse
|
| 9 |
+
)
|
| 10 |
from service.embedded_service import generate_embeddings
|
| 11 |
+
from service.prediction_service import predict_label
|
| 12 |
+
import numpy as np
|
| 13 |
|
| 14 |
# Initialize Router
|
| 15 |
router = APIRouter()
|
| 16 |
|
| 17 |
@router.post("/get_embeddings/", response_model=EmbeddingResponse)
|
| 18 |
async def get_embeddings(sms_request: SMSRequest):
|
|
|
|
| 19 |
if not sms_request.messages:
|
| 20 |
raise HTTPException(status_code=400, detail="No messages provided.")
|
| 21 |
|
|
|
|
| 22 |
embeddings = generate_embeddings(sms_request.messages)
|
| 23 |
|
|
|
|
| 24 |
if not embeddings or not all(isinstance(emb, list) for emb in embeddings):
|
| 25 |
raise HTTPException(status_code=500, detail="Failed to generate embeddings.")
|
| 26 |
|
|
|
|
| 27 |
dimensions = len(embeddings[0]) if embeddings else 0
|
| 28 |
|
|
|
|
| 29 |
return EmbeddingResponse(dimensions=dimensions, embeddings=embeddings)
|
| 30 |
|
| 31 |
@router.post("/calculate_similarity/", response_model=SimilarityResponse)
|
| 32 |
async def calculate_similarity(similarity_request: SimilarityRequest):
|
|
|
|
| 33 |
embeddings = generate_embeddings([similarity_request.message1, similarity_request.message2])
|
| 34 |
|
|
|
|
| 35 |
if len(embeddings) != 2:
|
| 36 |
raise HTTPException(status_code=500, detail="Failed to generate embeddings for both messages.")
|
| 37 |
|
|
|
|
| 38 |
vec1 = np.array(embeddings[0])
|
| 39 |
vec2 = np.array(embeddings[1])
|
| 40 |
cosine_similarity = np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
|
| 41 |
|
|
|
|
| 42 |
return SimilarityResponse(similarity_score=float(cosine_similarity))
|
| 43 |
+
|
| 44 |
+
@router.post("/predict_label/", response_model=PredictionResponse)
|
| 45 |
+
async def predict_sms_label(prediction_request: PredictionRequest):
|
| 46 |
+
label, probability = predict_label(prediction_request.message)
|
| 47 |
+
return PredictionResponse(label=label, probability=probability)
|
schemas/schema.py
CHANGED
|
@@ -25,4 +25,11 @@ class SimilarityRequest(BaseModel):
|
|
| 25 |
message2: str
|
| 26 |
|
| 27 |
class SimilarityResponse(BaseModel):
|
| 28 |
-
similarity_score: float
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
message2: str
|
| 26 |
|
| 27 |
class SimilarityResponse(BaseModel):
|
| 28 |
+
similarity_score: float
|
| 29 |
+
|
| 30 |
+
class PredictionRequest(BaseModel):
|
| 31 |
+
message: str
|
| 32 |
+
|
| 33 |
+
class PredictionResponse(BaseModel):
|
| 34 |
+
label: str
|
| 35 |
+
probability: float
|
service/embedded_service.py
CHANGED
|
@@ -5,4 +5,4 @@ def generate_embeddings(messages: list):
|
|
| 5 |
# Generate embeddings
|
| 6 |
embeddings = model.encode(messages)
|
| 7 |
embeddings = np.array(embeddings).tolist() # Convert to list for JSON serialization
|
| 8 |
-
return embeddings
|
|
|
|
| 5 |
# Generate embeddings
|
| 6 |
embeddings = model.encode(messages)
|
| 7 |
embeddings = np.array(embeddings).tolist() # Convert to list for JSON serialization
|
| 8 |
+
return embeddings
|
service/prediction_service.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
from sentence_transformers import SentenceTransformer
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
# Load Model and Transformer
|
| 6 |
+
with open('models/logistic_regression_model.pkl', 'rb') as f:
|
| 7 |
+
logistic_model = pickle.load(f)
|
| 8 |
+
|
| 9 |
+
model = SentenceTransformer('models/sentence_transformer')
|
| 10 |
+
|
| 11 |
+
def predict_label(message: str):
|
| 12 |
+
embedding = model.encode([message])
|
| 13 |
+
prediction = logistic_model.predict(embedding)[0]
|
| 14 |
+
probability = logistic_model.predict_proba(embedding)[0].max()
|
| 15 |
+
|
| 16 |
+
return prediction, float(probability)
|
service/train_model.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from sklearn.model_selection import train_test_split
|
| 3 |
+
from sklearn.linear_model import LogisticRegression
|
| 4 |
+
from sklearn.metrics import accuracy_score, classification_report
|
| 5 |
+
import pickle
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
|
| 8 |
+
file_name = "data/sms_process_data_main.xlsx"
|
| 9 |
+
sheet = "Sheet1"
|
| 10 |
+
df = pd.read_excel(file_name, sheet_name=sheet)
|
| 11 |
+
|
| 12 |
+
X_train, X_test, y_train, y_test = train_test_split(df['MessageText'], df['label'], test_size=0.2, random_state=42)
|
| 13 |
+
|
| 14 |
+
model = SentenceTransformer('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True)
|
| 15 |
+
|
| 16 |
+
X_train_embeddings = model.encode(X_train.tolist())
|
| 17 |
+
X_test_embeddings = model.encode(X_test.tolist())
|
| 18 |
+
|
| 19 |
+
logistic_model = LogisticRegression(max_iter=100)
|
| 20 |
+
logistic_model.fit(X_train_embeddings, y_train)
|
| 21 |
+
|
| 22 |
+
with open('models/logistic_regression_model.pkl', 'wb') as f:
|
| 23 |
+
pickle.dump(logistic_model, f)
|
| 24 |
+
|
| 25 |
+
model.save('models/sentence_transformer')
|