SB-PoC / app.py
Chirapath's picture
First draft coding project
963ae98 verified
#!/usr/bin/env python3
"""
Unified AI Services Application
Coordinates NER, OCR, and RAG services with combined workflows
"""
import asyncio
import subprocess
import signal
import sys
import os
import time
import json
import logging
from pathlib import Path
from typing import Dict, List, Optional, Any, Union
from contextlib import asynccontextmanager
from datetime import datetime
import tempfile
import io
import httpx
import uvicorn
from fastapi import FastAPI, File, UploadFile, HTTPException, Form, BackgroundTasks, Query
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse, StreamingResponse
from pydantic import BaseModel, HttpUrl
import psutil
# Import our configuration
from configs import get_config, validate_environment
# Get configuration
config = get_config()
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Global service processes
service_processes: Dict[str, subprocess.Popen] = {}
service_health: Dict[str, bool] = {}
# Pydantic Models for Unified API
class ServiceStatus(BaseModel):
name: str
status: str
port: int
health: bool
uptime: Optional[float] = None
response_time: Optional[float] = None
class UnifiedAnalysisRequest(BaseModel):
text: Optional[str] = None
url: Optional[HttpUrl] = None
extract_relationships: bool = True
include_embeddings: bool = True
include_summary: bool = True
generate_graph_files: bool = True
export_formats: List[str] = ["neo4j", "json", "graphml"]
enable_rag_indexing: bool = False
rag_title: Optional[str] = None
rag_keywords: Optional[List[str]] = None
rag_metadata: Optional[Dict[str, Any]] = None
class CombinedSearchRequest(BaseModel):
query: str
limit: int = 10
similarity_threshold: float = 0.2
include_ner_analysis: bool = True
ner_export_formats: List[str] = ["json"]
class UnifiedResponse(BaseModel):
success: bool
service_calls: List[str]
ner_analysis: Optional[Dict[str, Any]] = None
rag_document: Optional[Dict[str, Any]] = None
search_results: Optional[Dict[str, Any]] = None
processing_time: float
error: Optional[str] = None
# Service Management Functions
async def start_service(service_name: str, script_path: str, port: int) -> bool:
"""Start a service as a subprocess"""
try:
logger.info(f"πŸš€ Starting {service_name} service on port {port}")
# Check if port is already in use
if is_port_in_use(port):
logger.warning(f"Port {port} is already in use. Assuming {service_name} is already running.")
return True
# Start the service
if sys.platform == "win32":
process = subprocess.Popen([
sys.executable, script_path
], creationflags=subprocess.CREATE_NEW_PROCESS_GROUP)
else:
process = subprocess.Popen([
sys.executable, script_path
], preexec_fn=os.setsid)
service_processes[service_name] = process
# Wait for service to start
for i in range(30): # 30 second timeout
await asyncio.sleep(1)
if await check_service_health(service_name, port):
logger.info(f"βœ… {service_name} service started successfully")
service_health[service_name] = True
return True
logger.error(f"❌ {service_name} service failed to start within timeout")
return False
except Exception as e:
logger.error(f"❌ Failed to start {service_name} service: {e}")
return False
def is_port_in_use(port: int) -> bool:
"""Check if a port is already in use"""
try:
for conn in psutil.net_connections():
if conn.laddr.port == port:
return True
return False
except:
return False
async def check_service_health(service_name: str, port: int) -> bool:
"""Check if a service is healthy"""
try:
async with httpx.AsyncClient() as client:
response = await client.get(
f"http://localhost:{port}/health",
timeout=5.0
)
return response.status_code == 200
except:
return False
async def get_service_status(service_name: str, port: int) -> ServiceStatus:
"""Get detailed status of a service"""
start_time = time.time()
health = await check_service_health(service_name, port)
response_time = time.time() - start_time
uptime = None
if service_name in service_processes:
process = service_processes[service_name]
if process.poll() is None: # Process is running
try:
uptime = time.time() - psutil.Process(process.pid).create_time()
except:
uptime = None
return ServiceStatus(
name=service_name,
status="running" if health else "down",
port=port,
health=health,
uptime=uptime,
response_time=response_time
)
async def stop_all_services():
"""Stop all managed services"""
logger.info("πŸ›‘ Stopping all services...")
for service_name, process in service_processes.items():
try:
if process.poll() is None: # Process is running
logger.info(f"Stopping {service_name}...")
if sys.platform == "win32":
process.send_signal(signal.CTRL_BREAK_EVENT)
else:
os.killpg(os.getpgid(process.pid), signal.SIGTERM)
# Wait for graceful shutdown
try:
process.wait(timeout=10)
except subprocess.TimeoutExpired:
logger.warning(f"Force killing {service_name}")
process.kill()
logger.info(f"βœ… {service_name} stopped")
except Exception as e:
logger.error(f"Error stopping {service_name}: {e}")
# Service Communication Functions
async def call_ner_service(endpoint: str, method: str = "GET", **kwargs) -> Dict[str, Any]:
"""Call NER service endpoint"""
try:
async with httpx.AsyncClient(timeout=300.0) as client:
url = f"{config.NER_SERVICE_URL}{endpoint}"
response = await client.request(method, url, **kwargs)
if response.status_code == 200:
return response.json()
else:
raise HTTPException(status_code=response.status_code, detail=response.text)
except httpx.RequestError as e:
raise HTTPException(status_code=503, detail=f"NER service unavailable: {e}")
async def call_ocr_service(endpoint: str, method: str = "GET", **kwargs) -> Dict[str, Any]:
"""Call OCR service endpoint"""
try:
async with httpx.AsyncClient(timeout=300.0) as client:
url = f"{config.OCR_SERVICE_URL}{endpoint}"
response = await client.request(method, url, **kwargs)
if response.status_code == 200:
return response.json()
else:
raise HTTPException(status_code=response.status_code, detail=response.text)
except httpx.RequestError as e:
raise HTTPException(status_code=503, detail=f"OCR service unavailable: {e}")
async def call_rag_service(endpoint: str, method: str = "GET", **kwargs) -> Dict[str, Any]:
"""Call RAG service endpoint"""
try:
async with httpx.AsyncClient(timeout=300.0) as client:
url = f"{config.RAG_SERVICE_URL}{endpoint}"
response = await client.request(method, url, **kwargs)
if response.status_code == 200:
return response.json()
else:
raise HTTPException(status_code=response.status_code, detail=response.text)
except httpx.RequestError as e:
raise HTTPException(status_code=503, detail=f"RAG service unavailable: {e}")
# Application Lifecycle
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan management"""
logger.info("πŸš€ Starting Unified AI Services Application")
# Print configuration summary
config.print_configuration_summary()
# Validate environment
if not validate_environment():
logger.error("❌ Environment validation failed. Please check your configuration.")
raise RuntimeError("Invalid environment configuration")
# Define service paths
service_definitions = [
("ocr", "services/ocr_service.py", config.ocr.PORT),
("rag", "services/rag_service.py", config.rag.PORT),
("ner", "services/ner_service.py", config.ner.PORT)
]
# Start services
started_services = []
for service_name, script_path, port in service_definitions:
if os.path.exists(script_path):
success = await start_service(service_name, script_path, port)
if success:
started_services.append(service_name)
else:
logger.error(f"Failed to start {service_name} service")
else:
logger.warning(f"Service script not found: {script_path}")
if len(started_services) == 0:
logger.error("❌ No services could be started")
raise RuntimeError("Failed to start any services")
logger.info(f"βœ… Started {len(started_services)} services: {', '.join(started_services)}")
# Yield control to the application
yield
# Cleanup
await stop_all_services()
logger.info("🏁 Unified AI Services Application shutdown complete")
# FastAPI Application
app = FastAPI(
title="Unified AI Services",
description="Coordinated NER, OCR, and RAG services with combined workflows",
version="1.0.0",
lifespan=lifespan
)
# CORS configuration
allowed_origins = config.ner.ALLOWED_ORIGINS
if allowed_origins != "*":
try:
allowed_origins = json.loads(allowed_origins)
except:
allowed_origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=allowed_origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Main API Endpoints
@app.get("/")
async def root():
return {
"message": "Unified AI Services",
"version": "1.0.0",
"services": {
"ner": f"{config.NER_SERVICE_URL}",
"ocr": f"{config.OCR_SERVICE_URL}",
"rag": f"{config.RAG_SERVICE_URL}"
},
"unified_endpoints": {
"status": "/status",
"analyze": "/analyze",
"search": "/search",
"combined": "/combined/*"
}
}
@app.get("/health")
async def unified_health():
"""Unified health check for all services"""
services = [
("ner", config.ner.PORT),
("ocr", config.ocr.PORT),
("rag", config.rag.PORT)
]
service_statuses = []
overall_healthy = True
for service_name, port in services:
status = await get_service_status(service_name, port)
service_statuses.append(status.dict())
if not status.health:
overall_healthy = False
return {
"status": "healthy" if overall_healthy else "degraded",
"services": service_statuses,
"timestamp": datetime.utcnow().isoformat(),
"configuration": {
"ner_url": config.NER_SERVICE_URL,
"ocr_url": config.OCR_SERVICE_URL,
"rag_url": config.RAG_SERVICE_URL
}
}
@app.get("/status")
async def detailed_status():
"""Detailed status of all services"""
services = [
("ner", config.ner.PORT),
("ocr", config.ocr.PORT),
("rag", config.rag.PORT)
]
detailed_statuses = {}
for service_name, port in services:
try:
# Get service-specific health data
async with httpx.AsyncClient() as client:
response = await client.get(f"http://localhost:{port}/health", timeout=10.0)
if response.status_code == 200:
detailed_statuses[service_name] = response.json()
else:
detailed_statuses[service_name] = {"status": "error", "error": f"HTTP {response.status_code}"}
except Exception as e:
detailed_statuses[service_name] = {"status": "unreachable", "error": str(e)}
return {
"unified_app": {
"status": "running",
"port": config.MAIN_PORT,
"uptime": time.time() - start_time if 'start_time' in globals() else 0
},
"services": detailed_statuses,
"configuration_valid": validate_environment()
}
# Unified Analysis Endpoints
@app.post("/analyze/unified")
async def unified_analysis(request: UnifiedAnalysisRequest):
"""Unified analysis combining NER and optional RAG indexing"""
start_time = time.time()
service_calls = []
try:
# Step 1: NER Analysis
ner_data = {
"text": request.text,
"url": str(request.url) if request.url else None,
"extract_relationships": request.extract_relationships,
"include_embeddings": request.include_embeddings,
"include_summary": request.include_summary,
"generate_graph_files": request.generate_graph_files,
"export_formats": request.export_formats
}
# Remove None values
ner_data = {k: v for k, v in ner_data.items() if v is not None}
if request.text:
ner_result = await call_ner_service("/analyze/text", "POST", json=ner_data)
service_calls.append("ner_text")
elif request.url:
ner_result = await call_ner_service("/analyze/url", "POST", json=ner_data)
service_calls.append("ner_url")
else:
raise HTTPException(status_code=400, detail="Either text or url must be provided")
# Step 2: Optional RAG indexing
rag_result = None
if request.enable_rag_indexing and ner_result.get("success"):
try:
rag_data = {
"title": request.rag_title or f"NER Analysis {ner_result.get('analysis_id', 'unknown')}",
"keywords": request.rag_keywords or ner_result.get("keywords", []),
"metadata": {
**(request.rag_metadata or {}),
"ner_analysis_id": ner_result.get("analysis_id"),
"entity_count": len(ner_result.get("entities", [])),
"relationship_count": len(ner_result.get("relationships", []))
}
}
if request.text:
# Create temporary file for RAG service
with tempfile.NamedTemporaryFile(mode='w', suffix='.txt', delete=False) as f:
f.write(request.text)
temp_path = f.name
try:
with open(temp_path, 'rb') as f:
files = {"file": ("ner_analysis.txt", f, "text/plain")}
form_data = {
"title": rag_data["title"],
"keywords": json.dumps(rag_data["keywords"]),
"metadata": json.dumps(rag_data["metadata"])
}
async with httpx.AsyncClient(timeout=300.0) as client:
response = await client.post(
f"{config.RAG_SERVICE_URL}/documents/upload",
files=files,
data=form_data
)
if response.status_code == 200:
rag_result = response.json()
service_calls.append("rag_upload")
finally:
os.unlink(temp_path)
elif request.url:
async with httpx.AsyncClient(timeout=300.0) as client:
response = await client.post(
f"{config.RAG_SERVICE_URL}/documents/url",
json={
"url": str(request.url),
**rag_data,
"extract_images": True
}
)
if response.status_code == 200:
rag_result = response.json()
service_calls.append("rag_url")
except Exception as e:
logger.warning(f"RAG indexing failed: {e}")
# Continue without RAG result
processing_time = time.time() - start_time
return UnifiedResponse(
success=True,
service_calls=service_calls,
ner_analysis=ner_result,
rag_document=rag_result,
processing_time=processing_time
)
except Exception as e:
processing_time = time.time() - start_time
logger.error(f"Unified analysis failed: {e}")
return UnifiedResponse(
success=False,
service_calls=service_calls,
processing_time=processing_time,
error=str(e)
)
@app.post("/search/combined")
async def combined_search(request: CombinedSearchRequest):
"""Combined search using RAG with optional NER analysis of results"""
start_time = time.time()
service_calls = []
try:
# Step 1: RAG Search
search_data = {
"query": request.query,
"limit": request.limit,
"similarity_threshold": request.similarity_threshold
}
search_result = await call_rag_service("/search", "POST", json=search_data)
service_calls.append("rag_search")
# Step 2: Optional NER analysis of search results
ner_results = []
if request.include_ner_analysis and search_result.get("results"):
for i, result in enumerate(search_result["results"][:3]): # Analyze top 3 results
chunk_content = result.get("chunk", {}).get("content", "")
if chunk_content:
try:
ner_data = {
"text": chunk_content,
"extract_relationships": True,
"include_embeddings": False,
"include_summary": False,
"generate_graph_files": False,
"export_formats": request.ner_export_formats
}
ner_result = await call_ner_service("/analyze/text", "POST", json=ner_data)
ner_results.append({
"result_index": i,
"ner_analysis": ner_result
})
service_calls.append(f"ner_text_{i}")
except Exception as e:
logger.warning(f"NER analysis failed for result {i}: {e}")
processing_time = time.time() - start_time
return UnifiedResponse(
success=True,
service_calls=service_calls,
search_results={
**search_result,
"ner_analyses": ner_results
},
processing_time=processing_time
)
except Exception as e:
processing_time = time.time() - start_time
logger.error(f"Combined search failed: {e}")
return UnifiedResponse(
success=False,
service_calls=service_calls,
processing_time=processing_time,
error=str(e)
)
# Service Proxy Endpoints
@app.api_route("/ner/{path:path}", methods=["GET", "POST", "PUT", "DELETE"])
async def ner_proxy(path: str, request):
"""Proxy requests to NER service"""
try:
async with httpx.AsyncClient(timeout=300.0) as client:
url = f"{config.NER_SERVICE_URL}/{path}"
# Forward the request
if request.method == "GET":
response = await client.get(url, params=request.query_params)
else:
# Handle different content types
content_type = request.headers.get("content-type", "")
if "multipart/form-data" in content_type:
# Handle file uploads
form = await request.form()
files = {}
data = {}
for key, value in form.items():
if hasattr(value, 'read'): # File-like object
files[key] = (value.filename, await value.read(), value.content_type)
else:
data[key] = value
response = await client.request(request.method, url, files=files, data=data)
else:
# Handle JSON/other content
body = await request.body()
response = await client.request(
request.method,
url,
content=body,
headers={k: v for k, v in request.headers.items() if k.lower() != "host"}
)
# Return response
return response.json() if response.headers.get("content-type", "").startswith("application/json") else response.text
except httpx.RequestError as e:
raise HTTPException(status_code=503, detail=f"NER service unavailable: {e}")
@app.api_route("/ocr/{path:path}", methods=["GET", "POST", "PUT", "DELETE"])
async def ocr_proxy(path: str, request):
"""Proxy requests to OCR service"""
try:
async with httpx.AsyncClient(timeout=300.0) as client:
url = f"{config.OCR_SERVICE_URL}/{path}"
# Forward the request
if request.method == "GET":
response = await client.get(url, params=request.query_params)
else:
# Handle different content types
content_type = request.headers.get("content-type", "")
if "multipart/form-data" in content_type:
# Handle file uploads
form = await request.form()
files = {}
data = {}
for key, value in form.items():
if hasattr(value, 'read'): # File-like object
files[key] = (value.filename, await value.read(), value.content_type)
else:
data[key] = value
response = await client.request(request.method, url, files=files, data=data)
else:
# Handle JSON/other content
body = await request.body()
response = await client.request(
request.method,
url,
content=body,
headers={k: v for k, v in request.headers.items() if k.lower() != "host"}
)
# Return response
return response.json() if response.headers.get("content-type", "").startswith("application/json") else response.text
except httpx.RequestError as e:
raise HTTPException(status_code=503, detail=f"OCR service unavailable: {e}")
@app.api_route("/rag/{path:path}", methods=["GET", "POST", "PUT", "DELETE"])
async def rag_proxy(path: str, request):
"""Proxy requests to RAG service"""
try:
async with httpx.AsyncClient(timeout=300.0) as client:
url = f"{config.RAG_SERVICE_URL}/{path}"
# Forward the request
if request.method == "GET":
response = await client.get(url, params=request.query_params)
else:
# Handle different content types
content_type = request.headers.get("content-type", "")
if "multipart/form-data" in content_type:
# Handle file uploads
form = await request.form()
files = {}
data = {}
for key, value in form.items():
if hasattr(value, 'read'): # File-like object
files[key] = (value.filename, await value.read(), value.content_type)
else:
data[key] = value
response = await client.request(request.method, url, files=files, data=data)
else:
# Handle JSON/other content
body = await request.body()
response = await client.request(
request.method,
url,
content=body,
headers={k: v for k, v in request.headers.items() if k.lower() != "host"}
)
# Return response
return response.json() if response.headers.get("content-type", "").startswith("application/json") else response.text
except httpx.RequestError as e:
raise HTTPException(status_code=503, detail=f"RAG service unavailable: {e}")
# Convenience endpoints (direct service access)
@app.get("/analyze/text")
@app.post("/analyze/text")
async def analyze_text_direct(request=None):
"""Direct access to NER text analysis"""
if request:
return await call_ner_service("/analyze/text", "POST", json=await request.json())
else:
return {"message": "Use POST method with text data"}
@app.get("/documents")
async def list_documents():
"""Direct access to RAG document listing"""
return await call_rag_service("/documents", "GET")
@app.post("/search")
async def search_direct(request):
"""Direct access to RAG search"""
return await call_rag_service("/search", "POST", json=await request.json())
# Utility endpoints
@app.get("/services")
async def list_services():
"""List all available services and their endpoints"""
return {
"services": {
"ner": {
"url": config.NER_SERVICE_URL,
"description": "Named Entity Recognition with relationship extraction",
"endpoints": [
"/analyze/text", "/analyze/file", "/analyze/url", "/analyze/multi",
"/download/{analysis_id}/{file_type}", "/statistics", "/entity-types", "/relationship-types"
]
},
"ocr": {
"url": config.OCR_SERVICE_URL,
"description": "Optical Character Recognition with document processing",
"endpoints": [
"/ocr/upload", "/ocr/url", "/ocr/analyze"
]
},
"rag": {
"url": config.RAG_SERVICE_URL,
"description": "Retrieval-Augmented Generation with vector search",
"endpoints": [
"/documents/upload", "/documents/url", "/search", "/documents", "/documents/{id}"
]
}
},
"unified": {
"url": f"http://localhost:{config.MAIN_PORT}",
"description": "Unified interface for combined workflows",
"endpoints": [
"/analyze/unified", "/search/combined", "/ner/*", "/ocr/*", "/rag/*"
]
}
}
# Signal handlers for graceful shutdown
def signal_handler(signum, frame):
"""Handle shutdown signals"""
logger.info(f"Received signal {signum}, initiating graceful shutdown...")
asyncio.create_task(stop_all_services())
# Register signal handlers
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
# Store start time for uptime calculation
start_time = time.time()
if __name__ == "__main__":
print("πŸš€ Starting Unified AI Services Application")
print("=" * 50)
# Validate configuration before starting
if not validate_environment():
print("❌ Configuration validation failed!")
print("Please check your .env file and ensure all required services are configured.")
sys.exit(1)
print(f"🌐 Main application will run on: http://{config.MAIN_HOST}:{config.MAIN_PORT}")
print(f"πŸ“Š Services will be started automatically:")
print(f" β€’ NER Service: http://localhost:{config.ner.PORT}")
print(f" β€’ OCR Service: http://localhost:{config.ocr.PORT}")
print(f" β€’ RAG Service: http://localhost:{config.rag.PORT}")
print("")
print("🎯 Available endpoints:")
print(" β€’ Main API: /")
print(" β€’ Health Check: /health")
print(" β€’ Unified Analysis: /analyze/unified")
print(" β€’ Combined Search: /search/combined")
print(" β€’ Service Proxies: /ner/*, /ocr/*, /rag/*")
print("")
print("πŸ“– API Documentation: /docs")
print("")
try:
uvicorn.run(
"app:app",
host=config.MAIN_HOST,
port=config.MAIN_PORT,
reload=config.ner.DEBUG,
log_level="info"
)
except KeyboardInterrupt:
print("\nπŸ›‘ Shutting down gracefully...")
finally:
# Cleanup will be handled by the lifespan context manager
pass