import gradio as gr | |
from transformers import pipeline | |
import torch | |
# pipe = pipeline("image-to-text", | |
# model="Salesforce/blip-image-captioning-base") | |
pipe = pipeline(task="translation", | |
model="facebook/nllb-200-distilled-600M", | |
torch_dtype=torch.bfloat16) | |
# text_translated = pipe(text, | |
# src_lang="eng_Latn", | |
# tgt_lang="fra_Latn") | |
def launch(input): | |
out = pipe(input, src_lang="eng_Latn", | |
tgt_lang="fra_Latn") | |
return out[0]['translation_text'] | |
iface = gr.Interface(launch, | |
inputs="text", | |
outputs="text") | |
iface.launch() |