Spaces:
Runtime error
Runtime error
Chintan-Shah
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tiktoken
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
from model import GPTConfig, GPT
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
device = 'cpu'
|
10 |
+
if torch.cuda.is_available():
|
11 |
+
device = 'cuda'
|
12 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
13 |
+
device = "mps"
|
14 |
+
print(f"using device: {device}")
|
15 |
+
|
16 |
+
modelpath = '.'
|
17 |
+
|
18 |
+
# STOP
|
19 |
+
max_length = 500
|
20 |
+
|
21 |
+
enc = tiktoken.get_encoding('gpt2')
|
22 |
+
|
23 |
+
# CHANGES IN CURRENT CODE
|
24 |
+
ckpt_path = os.path.join(modelpath, 'GPT2ShakespeareModel.pt')
|
25 |
+
print(ckpt_path)
|
26 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
27 |
+
gptconf = GPTConfig(**checkpoint['model_args'])
|
28 |
+
model = GPT(gptconf)
|
29 |
+
state_dict = checkpoint['model']
|
30 |
+
unwanted_prefix = '_orig_mod.'
|
31 |
+
for k,v in list(state_dict.items()):
|
32 |
+
if k.startswith(unwanted_prefix):
|
33 |
+
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
34 |
+
model.load_state_dict(state_dict)
|
35 |
+
|
36 |
+
model.to(device)
|
37 |
+
model = torch.compile(model)
|
38 |
+
|
39 |
+
def generateText(inputText="JULIET\n", num_tokens=500):
|
40 |
+
start_tokens = enc.encode(inputText)
|
41 |
+
# print(start_tokens, len(start_tokens))
|
42 |
+
start_tokens = torch.tensor(start_tokens)
|
43 |
+
x = start_tokens.view(1, len(start_tokens))
|
44 |
+
# print(x, x.shape)
|
45 |
+
x = x.to(device)
|
46 |
+
|
47 |
+
while x.size(1) < max_length:
|
48 |
+
# forward the model to get the logits
|
49 |
+
with torch.no_grad():
|
50 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
51 |
+
# take the logits at the last position
|
52 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
53 |
+
# get the probabilities
|
54 |
+
probs = F.softmax(logits, dim=-1)
|
55 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
56 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
57 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
58 |
+
# select a token from the top-k probabilities
|
59 |
+
# note: multinomial does not demand the input to sum to 1
|
60 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
61 |
+
# gather the corresponding indices
|
62 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
63 |
+
# append to the sequence
|
64 |
+
x = torch.cat((x, xcol), dim=1)
|
65 |
+
# print(x.size(1))
|
66 |
+
|
67 |
+
# print the generated text
|
68 |
+
tokens = x[0, :max_length].tolist()
|
69 |
+
decoded = enc.decode(tokens)
|
70 |
+
return decoded
|
71 |
+
|
72 |
+
|
73 |
+
# def generateOutput(inputText="JULIET\n", num_tokens = 500):
|
74 |
+
# context = torch.zeros((1, 1), dtype=torch.long, device=device)
|
75 |
+
# return(decode(model.generate(context, max_new_tokens=num_tokens)[0].tolist()))
|
76 |
+
|
77 |
+
title = "GPT from Scratch using char tokenizer to generate text based on training"
|
78 |
+
description = "GPT from Scratch using char tokenizer to generate text based on training"
|
79 |
+
examples = [["ROMEO:\nWith love's light wings did I o'er-perch these walls;\nFor stony limits cannot hold love out,\nAnd what love can do that dares love attempt;\nTherefore thy kinsmen are no let to me.\n", 500],
|
80 |
+
["ROMEO:\n", 500],
|
81 |
+
["JULIET:\n", 500],
|
82 |
+
["CAPULET:\nWhy, how now, kinsman! wherefore storm you so?\n", 500],
|
83 |
+
["KING RICHARD II:\nAy, hand from hand, my love, and heart from heart.\nAnd", 500],
|
84 |
+
["KING RICHARD II:\n", 500],
|
85 |
+
["CAPULET:\n", 500],
|
86 |
+
["QUEEN:\nBanish us both and send the king with me.\nAnd", 500],
|
87 |
+
["QUEEN:\n", 500],
|
88 |
+
["CORIOLANUS:\n", 500],
|
89 |
+
["MENENIUS:\n", 500]
|
90 |
+
]
|
91 |
+
|
92 |
+
demo = gr.Interface(
|
93 |
+
generateText,
|
94 |
+
inputs = [
|
95 |
+
gr.Textbox(label="Starting text"),
|
96 |
+
gr.Slider(100, 2000, value = 500, step=100, label="Number of chars that you want in your output"),
|
97 |
+
],
|
98 |
+
outputs = [
|
99 |
+
gr.Text(),
|
100 |
+
],
|
101 |
+
title = title,
|
102 |
+
description = description,
|
103 |
+
examples = examples,
|
104 |
+
cache_examples=False
|
105 |
+
)
|
106 |
+
demo.launch()
|