Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import torch.nn as nn
|
4 |
import os
|
5 |
from outetts.v0_1.interface import InterfaceHF
|
6 |
import soundfile as sf
|
@@ -15,13 +14,10 @@ torch.set_grad_enabled(False) # Disable gradient computation
|
|
15 |
class OptimizedTTSInterface:
|
16 |
def __init__(self, model_name="OuteAI/OuteTTS-0.1-350M"):
|
17 |
self.interface = InterfaceHF(model_name)
|
18 |
-
#
|
19 |
-
self.interface.model =
|
20 |
-
|
21 |
-
|
22 |
-
# Move model to CPU and enable inference mode
|
23 |
-
self.interface.model.cpu()
|
24 |
-
self.interface.model.eval()
|
25 |
|
26 |
def create_speaker(self, *args, **kwargs):
|
27 |
with torch.inference_mode():
|
@@ -33,19 +29,25 @@ class OptimizedTTSInterface:
|
|
33 |
|
34 |
def initialize_models():
|
35 |
"""Initialize the OptimizedTTS and Faster-Whisper models"""
|
36 |
-
#
|
37 |
cache_dir = Path("model_cache")
|
38 |
cache_dir.mkdir(exist_ok=True)
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
43 |
asr_model = WhisperModel("tiny",
|
44 |
device="cpu",
|
45 |
compute_type="int8",
|
46 |
num_workers=1,
|
47 |
cpu_threads=2,
|
48 |
download_root=str(cache_dir))
|
|
|
|
|
|
|
|
|
49 |
return tts_interface, asr_model
|
50 |
|
51 |
def transcribe_audio(audio_path):
|
@@ -79,6 +81,9 @@ def preprocess_audio(audio_path):
|
|
79 |
if len(data.shape) > 1:
|
80 |
data = data.mean(axis=1)
|
81 |
|
|
|
|
|
|
|
82 |
# Save preprocessed audio
|
83 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
84 |
sf.write(temp_file.name, data, sr)
|
@@ -99,19 +104,20 @@ def process_audio_file(audio_path, reference_text, text_to_speak, temperature=0.
|
|
99 |
return None, reference_text
|
100 |
|
101 |
# Create speaker from reference audio
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
|
116 |
# Clean up preprocessed audio if it was created
|
117 |
if processed_audio != audio_path:
|
@@ -133,10 +139,10 @@ def process_audio_file(audio_path, reference_text, text_to_speak, temperature=0.
|
|
133 |
pass
|
134 |
return None, f"Error: {str(e)}"
|
135 |
|
136 |
-
print("
|
137 |
# Initialize models globally
|
138 |
TTS_INTERFACE, ASR_MODEL = initialize_models()
|
139 |
-
print("Models initialized!")
|
140 |
|
141 |
# Create Gradio interface
|
142 |
with gr.Blocks(title="Voice Cloning with OuteTTS") as demo:
|
@@ -146,14 +152,15 @@ with gr.Blocks(title="Voice Cloning with OuteTTS") as demo:
|
|
146 |
Upload a reference audio file, provide the text being spoken in that audio (or leave blank for automatic transcription),
|
147 |
and enter the new text you want to be spoken in the cloned voice.
|
148 |
|
149 |
-
Note:
|
150 |
""")
|
151 |
|
152 |
with gr.Row():
|
153 |
with gr.Column():
|
154 |
audio_input = gr.Audio(
|
155 |
label="Upload Reference Audio",
|
156 |
-
type="filepath"
|
|
|
157 |
)
|
158 |
reference_text = gr.Textbox(
|
159 |
label="Reference Text (leave blank for auto-transcription)",
|
@@ -194,10 +201,10 @@ with gr.Blocks(title="Voice Cloning with OuteTTS") as demo:
|
|
194 |
|
195 |
gr.Markdown("""
|
196 |
### Optimization Notes:
|
197 |
-
-
|
198 |
-
-
|
199 |
-
- Cached model loading
|
200 |
- Memory-efficient inference
|
|
|
201 |
|
202 |
### Tips for best results:
|
203 |
1. Use clear, high-quality reference audio
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
import os
|
4 |
from outetts.v0_1.interface import InterfaceHF
|
5 |
import soundfile as sf
|
|
|
14 |
class OptimizedTTSInterface:
|
15 |
def __init__(self, model_name="OuteAI/OuteTTS-0.1-350M"):
|
16 |
self.interface = InterfaceHF(model_name)
|
17 |
+
# Apply FP16 optimization where possible
|
18 |
+
self.interface.model = self.interface.model.half().float()
|
19 |
+
# Cache commonly used attributes
|
20 |
+
self.tokenizer = self.interface.model.tokenizer
|
|
|
|
|
|
|
21 |
|
22 |
def create_speaker(self, *args, **kwargs):
|
23 |
with torch.inference_mode():
|
|
|
29 |
|
30 |
def initialize_models():
|
31 |
"""Initialize the OptimizedTTS and Faster-Whisper models"""
|
32 |
+
# Create cache directory for models
|
33 |
cache_dir = Path("model_cache")
|
34 |
cache_dir.mkdir(exist_ok=True)
|
35 |
|
36 |
+
# Set environment variables for better performance
|
37 |
+
os.environ['OMP_NUM_THREADS'] = '4'
|
38 |
+
os.environ['MKL_NUM_THREADS'] = '4'
|
39 |
|
40 |
+
print("Loading ASR model...")
|
41 |
asr_model = WhisperModel("tiny",
|
42 |
device="cpu",
|
43 |
compute_type="int8",
|
44 |
num_workers=1,
|
45 |
cpu_threads=2,
|
46 |
download_root=str(cache_dir))
|
47 |
+
|
48 |
+
print("Loading TTS model...")
|
49 |
+
tts_interface = OptimizedTTSInterface()
|
50 |
+
|
51 |
return tts_interface, asr_model
|
52 |
|
53 |
def transcribe_audio(audio_path):
|
|
|
81 |
if len(data.shape) > 1:
|
82 |
data = data.mean(axis=1)
|
83 |
|
84 |
+
# Normalize audio
|
85 |
+
data = data / max(abs(data.max()), abs(data.min()))
|
86 |
+
|
87 |
# Save preprocessed audio
|
88 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
89 |
sf.write(temp_file.name, data, sr)
|
|
|
104 |
return None, reference_text
|
105 |
|
106 |
# Create speaker from reference audio
|
107 |
+
with torch.inference_mode():
|
108 |
+
speaker = TTS_INTERFACE.create_speaker(
|
109 |
+
processed_audio,
|
110 |
+
reference_text
|
111 |
+
)
|
112 |
|
113 |
+
# Generate speech with cloned voice
|
114 |
+
output = TTS_INTERFACE.generate(
|
115 |
+
text=text_to_speak,
|
116 |
+
speaker=speaker,
|
117 |
+
temperature=temperature,
|
118 |
+
repetition_penalty=repetition_penalty,
|
119 |
+
max_lenght=4096
|
120 |
+
)
|
121 |
|
122 |
# Clean up preprocessed audio if it was created
|
123 |
if processed_audio != audio_path:
|
|
|
139 |
pass
|
140 |
return None, f"Error: {str(e)}"
|
141 |
|
142 |
+
print("Starting initialization...")
|
143 |
# Initialize models globally
|
144 |
TTS_INTERFACE, ASR_MODEL = initialize_models()
|
145 |
+
print("Models initialized successfully!")
|
146 |
|
147 |
# Create Gradio interface
|
148 |
with gr.Blocks(title="Voice Cloning with OuteTTS") as demo:
|
|
|
152 |
Upload a reference audio file, provide the text being spoken in that audio (or leave blank for automatic transcription),
|
153 |
and enter the new text you want to be spoken in the cloned voice.
|
154 |
|
155 |
+
Note: First run may take longer while models are being cached.
|
156 |
""")
|
157 |
|
158 |
with gr.Row():
|
159 |
with gr.Column():
|
160 |
audio_input = gr.Audio(
|
161 |
label="Upload Reference Audio",
|
162 |
+
type="filepath",
|
163 |
+
source="microphone"
|
164 |
)
|
165 |
reference_text = gr.Textbox(
|
166 |
label="Reference Text (leave blank for auto-transcription)",
|
|
|
201 |
|
202 |
gr.Markdown("""
|
203 |
### Optimization Notes:
|
204 |
+
- Optimized for CPU performance
|
205 |
+
- Model caching enabled
|
|
|
206 |
- Memory-efficient inference
|
207 |
+
- Automatic audio preprocessing
|
208 |
|
209 |
### Tips for best results:
|
210 |
1. Use clear, high-quality reference audio
|