Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -45,7 +45,7 @@ combined_documents = recursive_framework_document + recursive_blueprint_document
|
|
45 |
#embeddings = AutoModel.from_pretrained("Cheselle/finetuned-arctic-sentence")
|
46 |
|
47 |
from sentence_transformers import SentenceTransformer
|
48 |
-
embeddings = SentenceTransformer("Cheselle/finetuned-arctic-sentence")
|
49 |
|
50 |
vectorstore = Qdrant.from_documents(
|
51 |
documents=combined_documents,
|
@@ -53,7 +53,7 @@ vectorstore = Qdrant.from_documents(
|
|
53 |
location=":memory:",
|
54 |
collection_name="ai_policy"
|
55 |
)
|
56 |
-
|
57 |
|
58 |
## Generation LLM
|
59 |
llm = ChatOpenAI(model="gpt-4o-mini")
|
@@ -73,7 +73,7 @@ retrieval_augmented_qa_chain = (
|
|
73 |
# INVOKE CHAIN WITH: {"question" : "<<SOME USER QUESTION>>"}
|
74 |
# "question" : populated by getting the value of the "question" key
|
75 |
# "context" : populated by getting the value of the "question" key and chaining it into the base_retriever
|
76 |
-
{"context": itemgetter("question") |
|
77 |
# "context" : is assigned to a RunnablePassthrough object (will not be called or considered in the next step)
|
78 |
# by getting the value of the "context" key from the previous step
|
79 |
| RunnablePassthrough.assign(context=itemgetter("context"))
|
|
|
45 |
#embeddings = AutoModel.from_pretrained("Cheselle/finetuned-arctic-sentence")
|
46 |
|
47 |
from sentence_transformers import SentenceTransformer
|
48 |
+
embeddings = SentenceTransformer("Cheselle/finetuned-arctic-sentence", from_flax=True)
|
49 |
|
50 |
vectorstore = Qdrant.from_documents(
|
51 |
documents=combined_documents,
|
|
|
53 |
location=":memory:",
|
54 |
collection_name="ai_policy"
|
55 |
)
|
56 |
+
retriever = vectorstore.as_retriever()
|
57 |
|
58 |
## Generation LLM
|
59 |
llm = ChatOpenAI(model="gpt-4o-mini")
|
|
|
73 |
# INVOKE CHAIN WITH: {"question" : "<<SOME USER QUESTION>>"}
|
74 |
# "question" : populated by getting the value of the "question" key
|
75 |
# "context" : populated by getting the value of the "question" key and chaining it into the base_retriever
|
76 |
+
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
|
77 |
# "context" : is assigned to a RunnablePassthrough object (will not be called or considered in the next step)
|
78 |
# by getting the value of the "context" key from the previous step
|
79 |
| RunnablePassthrough.assign(context=itemgetter("context"))
|