Spaces:
Runtime error
Runtime error
ChenyangSi
commited on
Commit
·
bf85ddb
1
Parent(s):
01e731e
Update free_lunch_utils.py
Browse files- free_lunch_utils.py +24 -4
free_lunch_utils.py
CHANGED
@@ -20,6 +20,26 @@ def isinstance_str(x: object, cls_name: str):
|
|
20 |
return False
|
21 |
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
def register_upblock2d(model):
|
@@ -77,10 +97,10 @@ def register_free_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
|
|
77 |
# Only operate on the first two stages
|
78 |
if hidden_states.shape[1] == 1280:
|
79 |
hidden_states[:,:640] = hidden_states[:,:640] * self.b1
|
80 |
-
|
81 |
if hidden_states.shape[1] == 640:
|
82 |
hidden_states[:,:320] = hidden_states[:,:320] * self.b2
|
83 |
-
|
84 |
# ---------------------------------------------------------
|
85 |
|
86 |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
@@ -215,10 +235,10 @@ def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
|
|
215 |
# Only operate on the first two stages
|
216 |
if hidden_states.shape[1] == 1280:
|
217 |
hidden_states[:,:640] = hidden_states[:,:640] * self.b1
|
218 |
-
|
219 |
if hidden_states.shape[1] == 640:
|
220 |
hidden_states[:,:320] = hidden_states[:,:320] * self.b2
|
221 |
-
|
222 |
# ---------------------------------------------------------
|
223 |
|
224 |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
20 |
return False
|
21 |
|
22 |
|
23 |
+
def Fourier_filter(x, threshold, scale):
|
24 |
+
dtype = x.dtype
|
25 |
+
x = x.type(torch.float32)
|
26 |
+
# FFT
|
27 |
+
x_freq = fft.fftn(x, dim=(-2, -1))
|
28 |
+
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
|
29 |
+
|
30 |
+
B, C, H, W = x_freq.shape
|
31 |
+
mask = torch.ones((B, C, H, W)).cuda()
|
32 |
+
|
33 |
+
crow, ccol = H // 2, W //2
|
34 |
+
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
|
35 |
+
x_freq = x_freq * mask
|
36 |
+
|
37 |
+
# IFFT
|
38 |
+
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
|
39 |
+
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
|
40 |
+
|
41 |
+
x_filtered = x_filtered.type(dtype)
|
42 |
+
return x_filtered
|
43 |
|
44 |
|
45 |
def register_upblock2d(model):
|
|
|
97 |
# Only operate on the first two stages
|
98 |
if hidden_states.shape[1] == 1280:
|
99 |
hidden_states[:,:640] = hidden_states[:,:640] * self.b1
|
100 |
+
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
|
101 |
if hidden_states.shape[1] == 640:
|
102 |
hidden_states[:,:320] = hidden_states[:,:320] * self.b2
|
103 |
+
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
|
104 |
# ---------------------------------------------------------
|
105 |
|
106 |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
235 |
# Only operate on the first two stages
|
236 |
if hidden_states.shape[1] == 1280:
|
237 |
hidden_states[:,:640] = hidden_states[:,:640] * self.b1
|
238 |
+
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
|
239 |
if hidden_states.shape[1] == 640:
|
240 |
hidden_states[:,:320] = hidden_states[:,:320] * self.b2
|
241 |
+
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
|
242 |
# ---------------------------------------------------------
|
243 |
|
244 |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|