Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler, AutoencoderKL,DiffusionPipeline | |
import torch | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
import spaces | |
def save_image(img): | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
MAX_SEED = np.iinfo(np.int32).max | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
### RealVisXL V3 ### | |
RealVisXLv3_pipe = DiffusionPipeline.from_pretrained( | |
"SG161222/RealVisXL_V3.0", | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
add_watermarker=False, | |
variant="fp16" | |
) | |
RealVisXLv3_pipe.to("cuda") | |
### RealVisXL V4 ### | |
RealVisXLv4_pipe = DiffusionPipeline.from_pretrained( | |
"SG161222/RealVisXL_V4.0", | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
add_watermarker=False, | |
variant="fp16" | |
) | |
RealVisXLv4_pipe.to("cuda") | |
### SDXL Turbo #### | |
pipe_turbo = StableDiffusionXLPipeline.from_pretrained("stabilityai/sdxl-turbo", | |
vae=vae, | |
torch_dtype=torch.float16, | |
variant="fp16" | |
) | |
pipe_turbo.to("cuda") | |
### SDXL Lightning ### | |
base = "stabilityai/stable-diffusion-xl-base-1.0" | |
repo = "ByteDance/SDXL-Lightning" | |
ckpt = "sdxl_lightning_1step_unet_x0.safetensors" | |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16) | |
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt))) | |
pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base, | |
unet=unet, | |
vae=vae, | |
text_encoder=pipe_turbo.text_encoder, | |
text_encoder_2=pipe_turbo.text_encoder_2, | |
tokenizer=pipe_turbo.tokenizer, | |
tokenizer_2=pipe_turbo.tokenizer_2, | |
torch_dtype=torch.float16, | |
variant="fp16" | |
)#.to("cuda") | |
del unet | |
pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample") | |
pipe_lightning.to("cuda") | |
### Hyper SDXL ### | |
repo_name = "ByteDance/Hyper-SD" | |
ckpt_name = "Hyper-SDXL-1step-Unet.safetensors" | |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16) | |
unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name))) | |
pipe_hyper = StableDiffusionXLPipeline.from_pretrained(base, | |
unet=unet, | |
vae=vae, | |
text_encoder=pipe_turbo.text_encoder, | |
text_encoder_2=pipe_turbo.text_encoder_2, | |
tokenizer=pipe_turbo.tokenizer, | |
tokenizer_2=pipe_turbo.tokenizer_2, | |
torch_dtype=torch.float16, | |
variant="fp16" | |
)#.to("cuda") | |
pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config) | |
pipe_hyper.to("cuda") | |
del unet | |
def run_comparison(prompt: str, | |
negative_prompt: str = "", | |
use_negative_prompt: bool = False, | |
num_inference_steps: int = 30, | |
num_images_per_prompt: int = 2, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 3, | |
randomize_seed: bool = False, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
if not use_negative_prompt: | |
negative_prompt = "" | |
image_turbo=pipe_turbo(prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
cross_attention_kwargs={"scale": 0.65}, | |
output_type="pil", | |
).images | |
image_paths = [save_image(img) for img in images] | |
return image_paths, seed | |
yield image_turbo, None, None, None, None | |
image_lightning=pipe_lightning(prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
cross_attention_kwargs={"scale": 0.65}, | |
output_type="pil", | |
).images | |
image_paths = [save_image(img) for img in images] | |
return image_paths, seed | |
yield image_turbo, image_lightning, None, None, None | |
image_hyper=pipe_hyper(prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
cross_attention_kwargs={"scale": 0.65}, | |
output_type="pil", | |
).images | |
image_paths = [save_image(img) for img in images] | |
return image_paths, seed | |
yield image_turbo, image_lightning, image_hyper, None, None | |
image_r3=RealVisXLv3_pipe(prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
cross_attention_kwargs={"scale": 0.65}, | |
output_type="pil", | |
).images | |
image_paths = [save_image(img) for img in images] | |
return image_paths, seed | |
yield image_turbo, image_lightning, image_hyper,image_r3, None | |
image_r4=RealVisXLv4_pipe(prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
cross_attention_kwargs={"scale": 0.65}, | |
output_type="pil", | |
).images | |
image_paths = [save_image(img) for img in images] | |
return image_paths, seed | |
yield image_turbo, image_lightning, image_hyper,image_r3, image_r4 | |
examples = ["A dignified beaver wearing glasses, a vest, and colorful neck tie.", | |
"The spirit of a tamagotchi wandering in the city of Barcelona", | |
"an ornate, high-backed mahogany chair with a red cushion", | |
"a sketch of a camel next to a stream", | |
"a delicate porcelain teacup sits on a saucer, its surface adorned with intricate blue patterns", | |
"a baby swan grafitti", | |
"A bald eagle made of chocolate powder, mango, and whipped cream" | |
] | |
with gr.Blocks() as demo: | |
gr.Markdown("## One step SDXL comparison 🦶") | |
gr.Markdown('Compare SDXL variants and distillations able to generate images in a single diffusion step') | |
prompt = gr.Textbox(label="Prompt") | |
run = gr.Button("Run") | |
with gr.Accordion("Advanced options", open=False): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
lines=4, | |
max_lines=6, | |
value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""", | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Steps", | |
minimum=10, | |
maximum=60, | |
step=1, | |
value=30, | |
) | |
with gr.Row(): | |
num_images_per_prompt = gr.Slider( | |
label="Images", | |
minimum=1, | |
maximum=5, | |
step=1, | |
value=2, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
visible=True | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(visible=True): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=2048, | |
step=8, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=2048, | |
step=8, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.1, | |
maximum=20.0, | |
step=0.1, | |
value=6, | |
) | |
with gr.Row(): | |
with gr.Column(): | |
image_turbo = gr.Gallery(label="SDXL Turbo",columns=1, preview=True,) | |
gr.Markdown("## [SDXL Turbo](https://huggingface.co/stabilityai/sdxl-turbo)") | |
with gr.Column(): | |
image_lightning = gr.Gallery(label="SDXL Lightning",columns=1, preview=True,) | |
gr.Markdown("## [SDXL Lightning](https://huggingface.co/ByteDance/SDXL-Lightning)") | |
with gr.Column(): | |
image_hyper = gr.Gallery(label="Hyper SDXL",columns=1, preview=True,) | |
gr.Markdown("## [Hyper SDXL](https://huggingface.co/ByteDance/Hyper-SD)") | |
with gr.Column(): | |
image_r3 = gr.Gallery(label="RealVisXL V3",columns=1, preview=True,) | |
gr.Markdown("## [RealVisXL V3](https://huggingface.co)") | |
with gr.Column(): | |
image_r4 = gr.Gallery(label="RealVisXL V4",columns=1, preview=True,) | |
gr.Markdown("## [RealVisXL V3](https://huggingface.co)") | |
image_outputs = [image_turbo, image_lightning, image_hyper, image_r3, image_r4] | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
negative_prompt.submit, | |
run_button.click, | |
], | |
fn=run_comparison, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
use_negative_prompt, | |
num_inference_steps, | |
num_images_per_prompt, | |
seed, | |
width, | |
height, | |
guidance_scale, | |
randomize_seed, | |
], | |
outputs=[image_outputs, seed], | |
api_name="run", | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
api_name=False, | |
) | |
gr.Examples( | |
examples=examples, | |
fn=run_comparison, | |
inputs=prompt, | |
outputs=[image_outputs, seed], | |
cache_examples=False, | |
run_on_click=True | |
) | |
demo.launch() |