NAG_FLUX.1-dev / src /attention_flux_nag.py
ChenDY's picture
upload
42d7985
import math
from typing import Optional
import torch
import torch.nn.functional as F
from diffusers.models.attention_processor import Attention
from diffusers.models.embeddings import apply_rotary_emb
class NAGFluxAttnProcessor2_0:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(
self,
nag_scale: float = 1.0,
nag_tau=2.5,
nag_alpha=0.25,
encoder_hidden_states_length: int = None,
):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.nag_scale = nag_scale
self.nag_tau = nag_tau
self.nag_alpha = nag_alpha
self.encoder_hidden_states_length = encoder_hidden_states_length
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
if self.nag_scale > 1.:
if encoder_hidden_states is not None:
assert len(hidden_states) == batch_size * 0.5
apply_guidance = True
else:
apply_guidance = False
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
# attention
if apply_guidance and encoder_hidden_states is not None:
query = query.tile(2, 1, 1)
key = key.tile(2, 1, 1)
value = value.tile(2, 1, 1)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
encoder_hidden_states_length = encoder_hidden_states.shape[1]
else:
assert self.encoder_hidden_states_length is not None
encoder_hidden_states_length = self.encoder_hidden_states_length
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
if not apply_guidance:
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
else:
origin_batch_size = batch_size // 2
query, query_negative = torch.chunk(query, 2, dim=0)
key, key_negative = torch.chunk(key, 2, dim=0)
value, value_negative = torch.chunk(value, 2, dim=0)
hidden_states_negative = F.scaled_dot_product_attention(query_negative, key_negative, value_negative, dropout_p=0.0, is_causal=False)
hidden_states_negative = hidden_states_negative.transpose(1, 2).reshape(origin_batch_size, -1, attn.heads * head_dim)
hidden_states_negative = hidden_states_negative.to(query.dtype)
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.transpose(1, 2).reshape(origin_batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
if apply_guidance:
encoder_hidden_states_negative, hidden_states_negative = (
hidden_states_negative[:, : encoder_hidden_states.shape[1]],
hidden_states_negative[:, encoder_hidden_states.shape[1]:],
)
hidden_states_positive = hidden_states
hidden_states_guidance = hidden_states_positive * self.nag_scale - hidden_states_negative * (self.nag_scale - 1)
norm_positive = torch.norm(hidden_states_positive, p=2, dim=-1, keepdim=True).expand(*hidden_states_positive.shape)
norm_guidance = torch.norm(hidden_states_guidance, p=2, dim=-1, keepdim=True).expand(*hidden_states_positive.shape)
scale = norm_guidance / norm_positive
hidden_states_guidance = hidden_states_guidance * torch.minimum(scale, scale.new_ones(1) * self.nag_tau) / scale
hidden_states = hidden_states_guidance * self.nag_alpha + hidden_states_positive * (1 - self.nag_alpha)
encoder_hidden_states = torch.cat((encoder_hidden_states, encoder_hidden_states_negative), dim=0)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:
if apply_guidance:
image_hidden_states_negative = hidden_states_negative[:, encoder_hidden_states_length:]
image_hidden_states = hidden_states[:, encoder_hidden_states_length:]
image_hidden_states_positive = image_hidden_states
image_hidden_states_guidance = image_hidden_states_positive * self.nag_scale - image_hidden_states_negative * (self.nag_scale - 1)
norm_positive = torch.norm(image_hidden_states_positive, p=2, dim=-1, keepdim=True).expand(*image_hidden_states_positive.shape)
norm_guidance = torch.norm(image_hidden_states_guidance, p=2, dim=-1, keepdim=True).expand(*image_hidden_states_positive.shape)
scale = norm_guidance / norm_positive
image_hidden_states_guidance = image_hidden_states_guidance * torch.minimum(scale, scale.new_ones(1) * self.nag_tau) / scale
# scale = torch.nan_to_num(scale, 10)
# image_hidden_states_guidance[scale > self.nag_tau] = image_hidden_states_guidance[scale > self.nag_tau] / (norm_guidance[scale > self.nag_tau] + 1e-7) * norm_positive[scale > self.nag_tau] * self.nag_tau
image_hidden_states = image_hidden_states_guidance * self.nag_alpha + image_hidden_states_positive * (1 - self.nag_alpha)
hidden_states_negative[:, encoder_hidden_states_length:] = image_hidden_states
hidden_states[:, encoder_hidden_states_length:] = image_hidden_states
hidden_states = torch.cat((hidden_states, hidden_states_negative), dim=0)
return hidden_states