Canstralian commited on
Commit
4fa8602
·
verified ·
1 Parent(s): ea9d24b

Create fine_tune_helpers.py

Browse files
Files changed (1) hide show
  1. fine_tune_helpers.py +47 -0
fine_tune_helpers.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from datasets import Dataset
3
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
4
+ import torch
5
+ import streamlit as st
6
+
7
+ def fine_tune_model(uploaded_file):
8
+ # Read CSV file
9
+ df = pd.read_csv(uploaded_file)
10
+ st.subheader("Dataset Preview")
11
+ st.write(df.head())
12
+
13
+ # Check for a 'text' column or allow user to choose a column
14
+ if 'text' not in df.columns:
15
+ st.warning("No 'text' column found. Please select the column to use for fine-tuning.")
16
+ column_choice = st.selectbox("Select the column containing text data", df.columns)
17
+ df['text'] = df[column_choice] # Create a 'text' column based on user selection
18
+
19
+ # Convert CSV to Hugging Face dataset format
20
+ dataset = Dataset.from_pandas(df)
21
+
22
+ model_name = st.selectbox("Select model for fine-tuning", ["distilbert-base-uncased"])
23
+
24
+ if st.button("Fine-tune Model"):
25
+ if model_name:
26
+ try:
27
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
28
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
29
+
30
+ def preprocess_function(examples):
31
+ return tokenizer(examples['text'], truncation=True, padding=True)
32
+
33
+ tokenized_datasets = dataset.map(preprocess_function, batched=True)
34
+
35
+ # Fine-tuning logic (example)
36
+ train_args = {
37
+ "output_dir": "./results",
38
+ "num_train_epochs": 3,
39
+ "per_device_train_batch_size": 16,
40
+ "logging_dir": "./logs",
41
+ }
42
+
43
+ st.success("Fine-tuning started (demo)!") # Fine-tuning process goes here
44
+ except Exception as e:
45
+ st.error(f"Error during fine-tuning: {e}")
46
+ else:
47
+ st.warning("Please select a model for fine-tuning.")