Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from huggingface_hub import HfApi, get_collection, list_collections, list_models | |
#from utils import MolecularPropertyPredictionModel, dataset_task_types, dataset_descriptions, dataset_property_names, dataset_property_names_to_dataset | |
from utils import MolecularGenerationModel | |
import pandas as pd | |
import os | |
import spaces | |
#candidate_models = get_models() | |
#task_names = { | |
# 'mit_synthesis': 'Reaction Synthesis', | |
# 'full_retro': 'Reaction Retro Synthesis' | |
#} | |
#task_names_to_tasks = {v: k for k, v in task_names.items()} | |
#tasks = list(candidate_models.keys()) | |
#task_descriptions = { | |
# 'mit_synthesis': 'Predict the reaction products given the reactants and reagents. \n' + \ | |
# '1. This model is trained on the USPTO MIT dataset. \n' + \ | |
# '2. The reactants and reagents are mixed in the input SMILES string. \n' + \ | |
# '3. Different compounds are separated by ".". \n' + \ | |
# '4. Input SMILES string example: C1CCOC1.N#Cc1ccsc1N.O=[N+]([O-])c1cc(F)c(F)cc1F.[H-].[Na+]', | |
# 'full_retro': 'Predict the reaction precursors given the reaction products. \n' + \ | |
# '1. This model is trained on the USPTO Full dataset. \n' + \ | |
# '2. In this dataset, we consider only a single product in the input SMILES string. \n' + \ | |
# '3. Input SMILES string example: CC(=O)OCC(=O)[C@@]1(O)CC[C@H]2[C@@H]3CCC4=CC(=O)CC[C@]4(C)C3=CC[C@@]21C' | |
#} | |
#property_names = list(candidate_models.keys()) | |
model = MolecularGenerationModel() | |
def predict_single_label(logp, tpas, sas, qed, logp_choose, tpsa_choose, sas_choose, qed_choose): | |
input_dict = dict() | |
if logp_choose: | |
input_dict['logP'] = logp | |
if tpsa_choose: | |
input_dict['TPSA'] = tpas | |
if sas_choose: | |
input_dict['SAS'] = sas | |
if qed_choose: | |
input_dict['QED'] = qed | |
if len(input_dict) == 0: | |
return "NA", "No input is selected" | |
print(input_dict) | |
try: | |
running_status = None | |
prediction = None | |
prediction = model.predict_single_smiles(input_dict) | |
#prediction = model.predict(smiles, property_name, adapter_id) | |
#prediction = model.predict_single_smiles(smiles, task) | |
if prediction is None: | |
return "NA", "Invalid SMILES string" | |
except Exception as e: | |
# no matter what the error is, we should return | |
print(e) | |
return "NA", "Generation failed" | |
#prediction = "\n".join([f"{idx+1}. {item}" for idx, item in enumerate(prediction)]) | |
return prediction, "Generation is done" | |
""" | |
def get_description(task_name): | |
task = task_names_to_tasks[task_name] | |
return task_descriptions[task] | |
#@spaces.GPU(duration=10) | |
""" | |
""" | |
@spaces.GPU(duration=30) | |
def predict_file(file, property_name): | |
property_id = dataset_property_names_to_dataset[property_name] | |
try: | |
adapter_id = candidate_models[property_id] | |
info = model.swith_adapter(property_id, adapter_id) | |
running_status = None | |
if info == "keep": | |
running_status = "Adapter is the same as the current one" | |
#print("Adapter is the same as the current one") | |
elif info == "switched": | |
running_status = "Adapter is switched successfully" | |
#print("Adapter is switched successfully") | |
elif info == "error": | |
running_status = "Adapter is not found" | |
#print("Adapter is not found") | |
return None, None, file, running_status | |
else: | |
running_status = "Unknown error" | |
return None, None, file, running_status | |
df = pd.read_csv(file) | |
# we have already checked the file contains the "smiles" column | |
df = model.predict_file(df, dataset_task_types[property_id]) | |
# we should save this file to the disk to be downloaded | |
# rename the file to have "_prediction" suffix | |
prediction_file = file.replace(".csv", "_prediction.csv") if file.endswith(".csv") else file.replace(".smi", "_prediction.csv") | |
print(file, prediction_file) | |
# save the file to the disk | |
df.to_csv(prediction_file, index=False) | |
except Exception as e: | |
# no matter what the error is, we should return | |
print(e) | |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), file, "Prediction failed" | |
return gr.update(visible=False), gr.DownloadButton(label="Download", value=prediction_file, visible=True), gr.update(visible=False), prediction_file, "Prediction is done" | |
def validate_file(file): | |
try: | |
if file.endswith(".csv"): | |
df = pd.read_csv(file) | |
if "smiles" not in df.columns: | |
# we should clear the file input | |
return "Invalid file content. The csv file must contain column named 'smiles'", \ | |
None, gr.update(visible=False), gr.update(visible=False) | |
# check the length of the smiles | |
length = len(df["smiles"]) | |
elif file.endswith(".smi"): | |
return "Invalid file extension", \ | |
None, gr.update(visible=False), gr.update(visible=False) | |
else: | |
return "Invalid file extension", \ | |
None, gr.update(visible=False), gr.update(visible=False) | |
except Exception as e: | |
return "Invalid file content.", \ | |
None, gr.update(visible=False), gr.update(visible=False) | |
if length > 100: | |
return "The space does not support the file containing more than 100 SMILES", \ | |
None, gr.update(visible=False), gr.update(visible=False) | |
return "Valid file", file, gr.update(visible=True), gr.update(visible=False) | |
""" | |
def raise_error(status): | |
if status != "Valid file": | |
raise gr.Error(status) | |
return None | |
""" | |
def clear_file(download_button): | |
# we might need to delete the prediction file and uploaded file | |
prediction_path = download_button | |
print(prediction_path) | |
if prediction_path and os.path.exists(prediction_path): | |
os.remove(prediction_path) | |
original_data_file_0 = prediction_path.replace("_prediction.csv", ".csv") | |
original_data_file_1 = prediction_path.replace("_prediction.csv", ".smi") | |
if os.path.exists(original_data_file_0): | |
os.remove(original_data_file_0) | |
if os.path.exists(original_data_file_1): | |
os.remove(original_data_file_1) | |
#if os.path.exists(file): | |
# os.remove(file) | |
#prediction_file = file.replace(".csv", "_prediction.csv") if file.endswith(".csv") else file.replace(".smi", "_prediction.csv") | |
#if os.path.exists(prediction_file): | |
# os.remove(prediction_file) | |
return gr.update(visible=False), gr.update(visible=False), None | |
""" | |
def toggle_slider(checked): | |
return gr.update(interactive=checked) | |
def toggle_sliders_based_on_checkboxes(checked_values): | |
"""Enable or disable sliders based on the corresponding checkbox values.""" | |
return [gr.update(interactive=checked_values[i]) for i in range(4)] | |
def build_inference(): | |
with gr.Blocks() as demo: | |
# first row - Dropdown input | |
#with gr.Row(): | |
#gr.Markdown(f"<span style='color: red;'>If you run out of your GPU quota, you can use the </span> <a href='https://huggingface.co/spaces/ChemFM/molecular_property_prediction'>CPU-powered space</a> but with much lower performance.") | |
#dropdown = gr.Dropdown([task_names[key] for key in tasks], label="Task", value=task_names[tasks[0]]) | |
description = f"This space allows you to generate ten possible molecules based on given conditions. \n" \ | |
f"1. You can enable or disable specific properties using checkboxes and adjust their values with sliders. \n" \ | |
f"2. The generated SMILES strings and their corresponding predicted properties will be displayed in the generations section. \n" \ | |
f"3. The properties include logP, TPSA, SAS, and QED. \n" \ | |
f"4. Model trained on the GuacaMol dataset for molecular design. " | |
description_box = gr.Textbox(label="Task description", lines=5, | |
interactive=False, | |
value= description) | |
# third row - Textbox input and prediction label | |
with gr.Row(equal_height=True): | |
with gr.Column(): | |
checkbox_1 = gr.Checkbox(label="logP", value=True) | |
slider_1 = gr.Slider(1, 7, value=4, label="logP", info="Choose between 1 and 7") | |
checkbox_1.change(toggle_slider, checkbox_1, slider_1) | |
with gr.Column(): | |
checkbox_2 = gr.Checkbox(label="TPSA", value=True) | |
slider_2 = gr.Slider(20, 140, value=80, label="TPSA", info="Choose between 20 and 140") | |
checkbox_2.change(toggle_slider, checkbox_2, slider_2) | |
with gr.Column(): | |
checkbox_3 = gr.Checkbox(label="SAS", value=True) | |
slider_3 = gr.Slider(1, 5, value=3, label="SAS", info="Choose between 1 and 5") | |
checkbox_3.change(toggle_slider, checkbox_3, slider_3) | |
with gr.Column(): | |
checkbox_4 = gr.Checkbox(label="QED", value=True) | |
slider_4 = gr.Slider(0.1, 0.9, value=0.5, label="QED", info="Choose between 0.1 and 0.9") | |
checkbox_4.change(toggle_slider, checkbox_4, slider_4) | |
predict_single_smiles_button = gr.Button("Generate", size='sm') | |
#prediction = gr.Label("Prediction will appear here") | |
#prediction = gr.Textbox(label="Predictions", type="text", placeholder=None, lines=10, interactive=False) | |
prediction = gr.Dataframe(label="Generations", type="pandas", interactive=False) | |
running_terminal_label = gr.Textbox(label="Running status", type="text", placeholder=None, lines=10, interactive=False) | |
# dropdown change event | |
# predict single button click event | |
predict_single_label.zerogpu=True | |
predict_single_smiles_button.click(lambda:(gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
) , outputs=[slider_1, slider_2, slider_3, slider_4, | |
checkbox_1, checkbox_2, checkbox_3, checkbox_4, | |
predict_single_smiles_button, running_terminal_label])\ | |
.then(predict_single_label, inputs=[slider_1, slider_2, slider_3, slider_4, | |
checkbox_1, checkbox_2, checkbox_3, checkbox_4 | |
], outputs=[prediction, running_terminal_label])\ | |
.then(lambda a, b, c, d: toggle_sliders_based_on_checkboxes([a, b, c, d]) + | |
[gr.update(interactive=True)] * 6, | |
inputs=[checkbox_1, checkbox_2, checkbox_3, checkbox_4], | |
outputs=[slider_1, slider_2, slider_3, slider_4, | |
checkbox_1, checkbox_2, checkbox_3, checkbox_4, | |
predict_single_smiles_button, running_terminal_label]) | |
return demo | |
demo = build_inference() | |
if __name__ == '__main__': | |
demo.launch() |