Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,22 +2,25 @@
|
|
| 2 |
import os, shutil, subprocess
|
| 3 |
from huggingface_hub import scan_cache_dir, snapshot_download
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
os.makedirs("/data/.cache", exist_ok=True)
|
|
|
|
|
|
|
| 7 |
os.environ.setdefault("XDG_CACHE_HOME", "/data/.cache")
|
| 8 |
os.environ.setdefault("HF_HOME", "/data/.cache/huggingface")
|
| 9 |
os.environ.setdefault("HF_HUB_CACHE", "/data/.cache/huggingface/hub")
|
| 10 |
-
|
| 11 |
-
os.environ.setdefault("
|
| 12 |
|
| 13 |
-
#
|
| 14 |
try:
|
| 15 |
cache = scan_cache_dir(os.environ["HF_HUB_CACHE"])
|
| 16 |
-
|
|
|
|
| 17 |
except Exception as e:
|
| 18 |
print(f"[cache prune] skipped: {e}")
|
| 19 |
|
| 20 |
-
#
|
| 21 |
try:
|
| 22 |
subprocess.run(["pip", "cache", "purge"], check=False)
|
| 23 |
except Exception:
|
|
@@ -29,48 +32,54 @@ import sys
|
|
| 29 |
import pandas as pd
|
| 30 |
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
# (or leave blank to use latest)
|
| 34 |
MODEL_ID = "ChatterjeeLab/MetaLATTE"
|
| 35 |
TOKENIZER_ID = "facebook/esm2_t33_650M_UR50D"
|
| 36 |
MODEL_REV = os.getenv("MODEL_REV", "") # e.g. "a1b2c3d"
|
| 37 |
TOKENIZER_REV = os.getenv("TOKENIZER_REV", "") # e.g. "9f8e7d6"
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
if
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
allow_patterns=[
|
| 52 |
"tokenizer.json","tokenizer_config.json","vocab.*","merges.*",
|
| 53 |
"special_tokens_map.json","*.model","tokenizer*.txt","spiece.*","*.tiktoken"
|
| 54 |
-
]
|
| 55 |
)
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
metalatte_local =
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
)
|
| 62 |
|
| 63 |
-
#
|
| 64 |
metalatte_path = '.'
|
| 65 |
sys.path.insert(0, metalatte_path)
|
| 66 |
|
| 67 |
-
# Import the custom configuration and model
|
| 68 |
from configuration import MetaLATTEConfig
|
| 69 |
from modeling_metalatte import MultitaskProteinModel
|
| 70 |
AutoConfig.register("metalatte", MetaLATTEConfig)
|
| 71 |
AutoModel.register(MetaLATTEConfig, MultitaskProteinModel)
|
| 72 |
|
| 73 |
-
# Load from the
|
| 74 |
tokenizer = AutoTokenizer.from_pretrained(esm_local, local_files_only=True)
|
| 75 |
config = AutoConfig.from_pretrained(metalatte_local, local_files_only=True)
|
| 76 |
model = AutoModel.from_pretrained(metalatte_local, config=config, local_files_only=True)
|
|
|
|
| 2 |
import os, shutil, subprocess
|
| 3 |
from huggingface_hub import scan_cache_dir, snapshot_download
|
| 4 |
|
| 5 |
+
# Put caches in /data and make sure dirs exist
|
| 6 |
+
os.makedirs("/data/.cache/huggingface/hub", exist_ok=True)
|
| 7 |
+
os.makedirs("/data/snapshots", exist_ok=True)
|
| 8 |
+
|
| 9 |
os.environ.setdefault("XDG_CACHE_HOME", "/data/.cache")
|
| 10 |
os.environ.setdefault("HF_HOME", "/data/.cache/huggingface")
|
| 11 |
os.environ.setdefault("HF_HUB_CACHE", "/data/.cache/huggingface/hub")
|
| 12 |
+
# Avoid TRANSFORMERS_CACHE deprecation; HF_HOME is enough.
|
| 13 |
+
# os.environ.setdefault("TRANSFORMERS_CACHE", "/data/.cache/huggingface/transformers")
|
| 14 |
|
| 15 |
+
# Prune old HF cache revisions (safe if empty; now the dir exists)
|
| 16 |
try:
|
| 17 |
cache = scan_cache_dir(os.environ["HF_HUB_CACHE"])
|
| 18 |
+
if cache.revisions:
|
| 19 |
+
cache.delete_revisions([rev for rev in cache.revisions])
|
| 20 |
except Exception as e:
|
| 21 |
print(f"[cache prune] skipped: {e}")
|
| 22 |
|
| 23 |
+
# Light pip cache cleanup
|
| 24 |
try:
|
| 25 |
subprocess.run(["pip", "cache", "purge"], check=False)
|
| 26 |
except Exception:
|
|
|
|
| 32 |
import pandas as pd
|
| 33 |
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
| 34 |
|
| 35 |
+
# Optional: pin commits via Space Variables
|
|
|
|
| 36 |
MODEL_ID = "ChatterjeeLab/MetaLATTE"
|
| 37 |
TOKENIZER_ID = "facebook/esm2_t33_650M_UR50D"
|
| 38 |
MODEL_REV = os.getenv("MODEL_REV", "") # e.g. "a1b2c3d"
|
| 39 |
TOKENIZER_REV = os.getenv("TOKENIZER_REV", "") # e.g. "9f8e7d6"
|
| 40 |
|
| 41 |
+
def snapshot_to(local_name, repo_id, revision, allow_patterns):
|
| 42 |
+
"""Download only needed files into a concrete folder under /data/snapshots."""
|
| 43 |
+
local_dir = f"/data/snapshots/{local_name}"
|
| 44 |
+
os.makedirs(local_dir, exist_ok=True)
|
| 45 |
+
# IMPORTANT: no ignore_regex; use ignore_patterns if needed
|
| 46 |
+
return snapshot_download(
|
| 47 |
+
repo_id=repo_id,
|
| 48 |
+
revision=revision if revision else None,
|
| 49 |
+
allow_patterns=allow_patterns,
|
| 50 |
+
local_dir=local_dir,
|
| 51 |
+
local_dir_use_symlinks=False, # copy files into local_dir; easier to manage size
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
# Tokenizer (small set of files)
|
| 55 |
+
esm_local = snapshot_to(
|
| 56 |
+
"esm2_tokenizer",
|
| 57 |
+
TOKENIZER_ID,
|
| 58 |
+
TOKENIZER_REV,
|
| 59 |
allow_patterns=[
|
| 60 |
"tokenizer.json","tokenizer_config.json","vocab.*","merges.*",
|
| 61 |
"special_tokens_map.json","*.model","tokenizer*.txt","spiece.*","*.tiktoken"
|
| 62 |
+
],
|
| 63 |
)
|
| 64 |
|
| 65 |
+
# MetaLATTE model (weights + config only)
|
| 66 |
+
metalatte_local = snapshot_to(
|
| 67 |
+
"metalatte_model",
|
| 68 |
+
MODEL_ID,
|
| 69 |
+
MODEL_REV,
|
| 70 |
+
allow_patterns=["*.json","*.safetensors","*.bin","*.model","*.txt"],
|
| 71 |
)
|
| 72 |
|
| 73 |
+
# Your local package
|
| 74 |
metalatte_path = '.'
|
| 75 |
sys.path.insert(0, metalatte_path)
|
| 76 |
|
|
|
|
| 77 |
from configuration import MetaLATTEConfig
|
| 78 |
from modeling_metalatte import MultitaskProteinModel
|
| 79 |
AutoConfig.register("metalatte", MetaLATTEConfig)
|
| 80 |
AutoModel.register(MetaLATTEConfig, MultitaskProteinModel)
|
| 81 |
|
| 82 |
+
# Load from the downloaded dirs (no network, no extra cache growth)
|
| 83 |
tokenizer = AutoTokenizer.from_pretrained(esm_local, local_files_only=True)
|
| 84 |
config = AutoConfig.from_pretrained(metalatte_local, local_files_only=True)
|
| 85 |
model = AutoModel.from_pretrained(metalatte_local, config=config, local_files_only=True)
|