ChaseHan's picture
Update app.py
55866d0 verified
import gradio as gr
import cv2
import numpy as np
import os
import json
from PIL import Image
import io
import base64
from openai import OpenAI
from ultralytics import YOLO
# Define the Latex2Layout model path
model_path = "latex2layout_object_detection_yolov8.pt"
# Verify model file existence
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file not found at {model_path}")
# Load the Latex2Layout model with error handling
try:
model = YOLO(model_path)
except Exception as e:
raise RuntimeError(f"Failed to load Latex2Layout model: {e}")
# Qwen API configuration
QWEN_BASE_URL = "https://dashscope.aliyuncs.com/compatible-mode/v1"
QWEN_MODELS = {
"Qwen2.5-VL-3B-Instruct": "qwen2.5-vl-3b-instruct",
"Qwen2.5-VL-7B-Instruct": "qwen2.5-vl-7b-instruct",
"Qwen2.5-VL-14B-Instruct": "qwen2.5-vl-14b-instruct",
}
# Default system prompt template
default_system_prompt = """You are an assistant specialized in document layout analysis.
The following layout elements were detected in the image (confidence >= 0.5):
{layout_info}
Use this information and the image to answer layout-related questions."""
def encode_image(image_array):
"""
Convert a numpy array image to a base64-encoded string.
Args:
image_array: Numpy array representing the image.
Returns:
str: Base64-encoded string of the image.
"""
try:
pil_image = Image.fromarray(image_array)
img_byte_arr = io.BytesIO()
pil_image.save(img_byte_arr, format='PNG')
return base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
except Exception as e:
raise ValueError(f"Failed to encode image: {e}")
def detect_layout(image, confidence_threshold=0.5):
"""
Detect layout elements in the uploaded image using the Latex2Layout model.
Args:
image: Uploaded image as a numpy array.
confidence_threshold: Minimum confidence score to retain detections (default: 0.5).
Returns:
tuple: (annotated_image, layout_info_str)
- annotated_image: Image with bounding boxes drawn (confidence >= 0.5).
- layout_info_str: JSON string of layout detections (confidence >= 0.5).
"""
if image is None or not isinstance(image, np.ndarray):
return None, "Error: No image uploaded or invalid image format."
try:
# Perform detection
results = model(image)
result = results[0]
annotated_image = image.copy()
layout_info = []
# Process detections
for box in result.boxes:
conf = float(box.conf[0])
if conf < confidence_threshold:
continue
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
cls_id = int(box.cls[0])
cls_name = result.names[cls_id]
color = tuple(np.random.randint(0, 255, 3).tolist())
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), color, 2)
label = f"{cls_name} {conf:.2f}"
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
cv2.rectangle(annotated_image, (x1, y1 - label_height - 5), (x1 + label_width, y1), color, -1)
cv2.putText(annotated_image, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
layout_info.append({
"bbox": [x1, y1, x2, y2],
"class": cls_name,
"confidence": conf
})
layout_info_str = json.dumps(layout_info, indent=2) if layout_info else "No layout elements detected with confidence >= 0.5."
return annotated_image, layout_info_str
except Exception as e:
return None, f"Error during layout detection: {str(e)}"
def detect_example_image():
"""
Load and detect layout elements in the example image (./image1.png).
Returns:
tuple: (example_image, annotated_image, layout_info_str)
- example_image: Original example image.
- annotated_image: Annotated example image.
- layout_info_str: JSON string of layout detections.
"""
example_image_path = "./image1.png"
if not os.path.exists(example_image_path):
return None, None, "Error: Example image not found."
try:
# Load image in BGR and convert to RGB
bgr_image = cv2.imread(example_image_path)
if bgr_image is None:
return None, None, "Error: Failed to load example image."
rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
# Run detection
annotated_image, layout_info_str = detect_layout(rgb_image)
return rgb_image, annotated_image, layout_info_str
except Exception as e:
return None, None, f"Error processing example image: {str(e)}"
def qa_about_layout(image, question, layout_info, api_key, model_name, system_prompt_template):
"""
Answer layout-related questions using the Qwen API with an editable system prompt.
Args:
image: Uploaded image as a numpy array.
question: User's question about the layout.
layout_info: JSON string of layout detection results.
api_key: User's Qwen API key.
model_name: Selected Qwen model name.
system_prompt_template: Editable system prompt template.
Returns:
str: Qwen's response to the question.
"""
if image is None or not isinstance(image, np.ndarray):
return "Error: Please upload a valid image."
if not question:
return "Error: Please enter a question."
if not api_key:
return "Error: Please provide a Qwen API key."
if not layout_info:
return "Error: No layout information available. Detect layout first."
try:
# Encode image to base64
base64_image = encode_image(image)
# Map model name to ID
model_id = QWEN_MODELS.get(model_name)
if not model_id:
return "Error: Invalid Qwen model selected."
# Replace placeholder in system prompt with layout info
system_prompt = system_prompt_template.replace("{layout_info}", layout_info)
# Initialize OpenAI client for Qwen API
client = OpenAI(api_key=api_key, base_url=QWEN_BASE_URL)
# Prepare API request messages
messages = [
{"role": "system", "content": [{"type": "text", "text": system_prompt}]},
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}},
{"type": "text", "text": question},
],
},
]
# Call Qwen API
completion = client.chat.completions.create(model=model_id, messages=messages)
return completion.choices[0].message.content
except Exception as e:
return f"Error during QA: {str(e)}"
# Build Gradio interface
with gr.Blocks(title="Latex2Layout QA System") as demo:
gr.Markdown("# Latex2Layout QA System")
gr.Markdown("Upload an image or use the example to detect layout elements and ask questions using Qwen models.")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Upload Image", type="numpy")
detect_btn = gr.Button("Detect Layout")
example_btn = gr.Button("Detect Example Image")
gr.Markdown("**Tip**: Use clear images for best results.")
with gr.Column(scale=1):
output_image = gr.Image(label="Detected Layout")
layout_info = gr.Textbox(label="Layout Information", lines=10, interactive=False)
with gr.Row():
with gr.Column(scale=1):
api_key_input = gr.Textbox(
label="Qwen API Key",
placeholder="Enter your Qwen API key",
type="password"
)
model_select = gr.Dropdown(
label="Select Qwen Model",
choices=list(QWEN_MODELS.keys()),
value="Qwen2.5-VL-3B-Instruct"
)
gr.Markdown("**System Prompt Template**: Edit the prompt sent to Qwen. Include `{layout_info}` to insert detection results.")
system_prompt_input = gr.Textbox(
label="System Prompt Template",
value=default_system_prompt,
lines=5,
placeholder="Edit the system prompt here. Keep {layout_info} to include detection results."
)
question_input = gr.Textbox(label="Ask About the Layout", placeholder="e.g., 'Where is the heading?'")
qa_btn = gr.Button("Ask Question")
with gr.Column(scale=1):
answer_output = gr.Textbox(label="Answer", lines=5, interactive=False)
# Event handlers
detect_btn.click(
fn=detect_layout,
inputs=[input_image],
outputs=[output_image, layout_info]
)
example_btn.click(
fn=detect_example_image,
inputs=[],
outputs=[input_image, output_image, layout_info]
)
qa_btn.click(
fn=qa_about_layout,
inputs=[input_image, question_input, layout_info, api_key_input, model_select, system_prompt_input],
outputs=[answer_output]
)
# Launch the application
if __name__ == "__main__":
demo.launch()