Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,30 +5,28 @@ from PIL import Image, ImageDraw, ImageFont
|
|
| 5 |
import json
|
| 6 |
import re
|
| 7 |
from spaces import GPU
|
| 8 |
-
from peft import PeftModel
|
| 9 |
|
| 10 |
# --- 1. Configurations and Constants ---
|
| 11 |
# Define user-facing names and Hugging Face IDs for the models
|
| 12 |
MODEL_BASE_NAME = "Latex2Layout-Base"
|
| 13 |
MODEL_BASE_ID = "ChaseHan/Latex2Layout-2000-sync"
|
| 14 |
|
| 15 |
-
MODEL_ENHANCED_NAME = "
|
| 16 |
-
|
| 17 |
-
MODEL_ENHANCED_LORA_ID = "ZelongWang/Qwen2.5-VL-3B-GRPO-lora-pdf-v3"
|
| 18 |
-
LORA_CHECKPOINT_FOLDER = "checkpoint-525" # Subfolder containing the adapter
|
| 19 |
|
| 20 |
# --- NEW: Add a name for the Mixing mode ---
|
| 21 |
MODEL_MIXING_NAME = "Mixing (Base + Enhanced)"
|
| 22 |
-
|
| 23 |
MODEL_CHOICES = [MODEL_BASE_NAME, MODEL_ENHANCED_NAME, MODEL_MIXING_NAME]
|
| 24 |
|
|
|
|
| 25 |
# Target image size for model input
|
| 26 |
TARGET_SIZE = (924, 1204)
|
| 27 |
|
| 28 |
# Visualization Style Constants
|
| 29 |
OUTLINE_WIDTH = 3
|
|
|
|
| 30 |
LABEL_COLORS = {
|
| 31 |
-
"title": (255, 82, 82, 90),
|
| 32 |
"abstract": (46, 204, 113, 90), # Green
|
| 33 |
"heading": (52, 152, 219, 90), # Blue
|
| 34 |
"footnote": (241, 196, 15, 90), # Yellow
|
|
@@ -48,46 +46,30 @@ DEFAULT_PROMPT = (
|
|
| 48 |
# --- 2. Load Models and Processor ---
|
| 49 |
print("Loading models, this will take some time and VRAM...")
|
| 50 |
try:
|
| 51 |
-
#
|
| 52 |
-
|
|
|
|
| 53 |
model_base = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 54 |
MODEL_BASE_ID,
|
| 55 |
torch_dtype=torch.float16,
|
| 56 |
device_map="auto"
|
| 57 |
)
|
| 58 |
|
| 59 |
-
|
| 60 |
-
print(f"Loading enhanced model base: {MODEL_ENHANCED_BASE_ID}...")
|
| 61 |
-
# Step 1: Load the new base model
|
| 62 |
model_enhanced = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 63 |
-
|
| 64 |
-
torch_dtype=torch.
|
| 65 |
-
device_map="auto",
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
print(f"Loading LoRA adapter online from: {MODEL_ENHANCED_LORA_ID}...")
|
| 69 |
-
# Step 2: Load Peft adapter directly from the Hub, specifying the subfolder
|
| 70 |
-
model_enhanced = PeftModel.from_pretrained(
|
| 71 |
-
model_enhanced,
|
| 72 |
-
MODEL_ENHANCED_LORA_ID,
|
| 73 |
-
subfolder=LORA_CHECKPOINT_FOLDER,
|
| 74 |
device_map="auto"
|
| 75 |
)
|
| 76 |
-
|
| 77 |
-
# Step 3: Merge the adapter weights and unload the PeftModel
|
| 78 |
-
print("Merging LoRA adapter...")
|
| 79 |
-
model_enhanced = model_enhanced.merge_and_unload()
|
| 80 |
-
print(f"Successfully loaded and merged model: {MODEL_ENHANCED_NAME}")
|
| 81 |
|
| 82 |
-
#
|
| 83 |
processor = AutoProcessor.from_pretrained(MODEL_BASE_ID)
|
| 84 |
-
print("All models
|
| 85 |
except Exception as e:
|
| 86 |
print(f"Error loading models: {e}")
|
| 87 |
exit()
|
| 88 |
|
| 89 |
-
# ---
|
| 90 |
-
|
| 91 |
def calculate_iou(boxA, boxB):
|
| 92 |
"""Calculate Intersection over Union (IoU) of two bounding boxes."""
|
| 93 |
# Determine the coordinates of the intersection rectangle
|
|
@@ -109,8 +91,9 @@ def calculate_iou(boxA, boxB):
|
|
| 109 |
# Return the IoU
|
| 110 |
return interArea / unionArea if unionArea > 0 else 0
|
| 111 |
|
|
|
|
| 112 |
@GPU
|
| 113 |
-
def analyze_and_visualize_layout(input_image: Image.Image, selected_model_name: str, prompt: str,
|
| 114 |
"""
|
| 115 |
Takes an image and model parameters, runs inference, and returns a visualized image and raw text output.
|
| 116 |
Supports running a single model or mixing results from two models.
|
|
@@ -119,50 +102,40 @@ def analyze_and_visualize_layout(input_image: Image.Image, selected_model_name:
|
|
| 119 |
return None, "Please upload an image first."
|
| 120 |
|
| 121 |
progress(0, desc="Resizing image...")
|
| 122 |
-
|
|
|
|
| 123 |
|
| 124 |
-
# --- Nested function to run inference on a given model ---
|
| 125 |
def run_inference(model_to_run, model_name_desc):
|
| 126 |
progress(0.1, desc=f"Preparing inputs for {model_name_desc}...")
|
| 127 |
-
messages = [{"role": "user", "content": [{"type": "image", "image":
|
| 128 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 129 |
-
inputs = processor(text=[text], images=[
|
| 130 |
-
|
| 131 |
-
gen_kwargs = {"max_new_tokens": 4096}
|
| 132 |
-
if use_greedy:
|
| 133 |
-
gen_kwargs["do_sample"] = False
|
| 134 |
-
else:
|
| 135 |
-
gen_kwargs["do_sample"] = True
|
| 136 |
-
gen_kwargs["temperature"] = temperature
|
| 137 |
-
gen_kwargs["top_p"] = top_p
|
| 138 |
-
|
| 139 |
progress(0.5, desc=f"Generating layout data with {model_name_desc}...")
|
| 140 |
with torch.no_grad():
|
| 141 |
-
output_ids = model_to_run.generate(**inputs,
|
| 142 |
|
| 143 |
raw_text = processor.batch_decode(output_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)[0]
|
| 144 |
|
| 145 |
try:
|
| 146 |
json_match = re.search(r"```json(.*?)```", raw_text, re.DOTALL)
|
| 147 |
json_str = json_match.group(1).strip() if json_match else raw_text.strip()
|
| 148 |
-
|
| 149 |
-
return parsed_results, raw_text
|
| 150 |
except (json.JSONDecodeError, AttributeError):
|
| 151 |
-
# Return raw text on failure for debugging
|
| 152 |
-
return None, raw_text
|
| 153 |
|
| 154 |
# --- Main logic: single model or mixing ---
|
| 155 |
if selected_model_name == MODEL_MIXING_NAME:
|
| 156 |
-
# Run both models
|
| 157 |
base_results, raw_text_base = run_inference(model_base, "Base Model")
|
| 158 |
enhanced_results, raw_text_enhanced = run_inference(model_enhanced, "Enhanced Model")
|
| 159 |
|
| 160 |
output_text = f"--- Base Model Output ---\n{raw_text_base}\n\n--- Enhanced Model Output ---\n{raw_text_enhanced}"
|
| 161 |
|
| 162 |
if base_results is None or enhanced_results is None:
|
| 163 |
-
return
|
| 164 |
|
| 165 |
-
# Merge results
|
| 166 |
progress(0.8, desc="Merging results from both models...")
|
| 167 |
merged_results = list(base_results)
|
| 168 |
base_bboxes = [item['bbox_2d'] for item in base_results if 'bbox_2d' in item]
|
|
@@ -172,8 +145,7 @@ def analyze_and_visualize_layout(input_image: Image.Image, selected_model_name:
|
|
| 172 |
|
| 173 |
is_duplicate = False
|
| 174 |
for base_bbox in base_bboxes:
|
| 175 |
-
|
| 176 |
-
if iou > 0.5: # IoU threshold for duplication
|
| 177 |
is_duplicate = True
|
| 178 |
break
|
| 179 |
|
|
@@ -181,17 +153,16 @@ def analyze_and_visualize_layout(input_image: Image.Image, selected_model_name:
|
|
| 181 |
merged_results.append(enhanced_item)
|
| 182 |
|
| 183 |
results = merged_results
|
| 184 |
-
|
| 185 |
else:
|
| 186 |
# Run a single model
|
| 187 |
model = model_base if selected_model_name == MODEL_BASE_NAME else model_enhanced
|
| 188 |
results, output_text = run_inference(model, selected_model_name)
|
| 189 |
if results is None:
|
| 190 |
-
return
|
| 191 |
|
| 192 |
# --- Visualization ---
|
| 193 |
-
progress(0.9, desc="
|
| 194 |
-
overlay = Image.new('RGBA',
|
| 195 |
draw = ImageDraw.Draw(overlay)
|
| 196 |
|
| 197 |
try:
|
|
@@ -200,9 +171,7 @@ def analyze_and_visualize_layout(input_image: Image.Image, selected_model_name:
|
|
| 200 |
font = ImageFont.load_default()
|
| 201 |
|
| 202 |
for item in sorted(results, key=lambda x: x.get("order", 999)):
|
| 203 |
-
bbox = item.get("bbox_2d")
|
| 204 |
-
label = item.get("label", "other")
|
| 205 |
-
order = item.get("order", "")
|
| 206 |
if not bbox or len(bbox) != 4: continue
|
| 207 |
|
| 208 |
fill_color_rgba = LABEL_COLORS.get(label, LABEL_COLORS["other"])
|
|
@@ -216,20 +185,23 @@ def analyze_and_visualize_layout(input_image: Image.Image, selected_model_name:
|
|
| 216 |
draw.rectangle(tag_bg_box, fill=solid_color_rgb)
|
| 217 |
draw.text((bbox[0] + 5, bbox[1] + 3), tag_text, font=font, fill="white")
|
| 218 |
|
| 219 |
-
|
|
|
|
|
|
|
| 220 |
|
| 221 |
def clear_outputs():
|
|
|
|
| 222 |
return None, None
|
| 223 |
|
| 224 |
-
def toggle_sampling_params(use_greedy):
|
| 225 |
-
"""Updates visibility of temperature and top-p sliders."""
|
| 226 |
-
is_visible = not use_greedy
|
| 227 |
-
return gr.update(visible=is_visible)
|
| 228 |
-
|
| 229 |
# --- 4. Gradio User Interface ---
|
| 230 |
with gr.Blocks(theme=gr.themes.Glass(), title="Academic Paper Layout Detection") as demo:
|
|
|
|
| 231 |
gr.Markdown("# 📄 Academic Paper Layout Detection")
|
| 232 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
gr.Markdown("<hr>")
|
| 234 |
|
| 235 |
with gr.Row():
|
|
@@ -241,38 +213,40 @@ with gr.Blocks(theme=gr.themes.Glass(), title="Academic Paper Layout Detection")
|
|
| 241 |
with gr.Row():
|
| 242 |
analyze_btn = gr.Button("✨ Analyze Layout", variant="primary", scale=1)
|
| 243 |
|
|
|
|
| 244 |
with gr.Accordion("Advanced Settings", open=False):
|
| 245 |
model_selector = gr.Radio(
|
| 246 |
-
choices=MODEL_CHOICES,
|
| 247 |
-
value=
|
| 248 |
-
label="Select Model"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
)
|
| 250 |
-
prompt_textbox = gr.Textbox(label="Prompt", value=DEFAULT_PROMPT, lines=5)
|
| 251 |
-
|
| 252 |
-
greedy_checkbox = gr.Checkbox(label="Use Greedy Decoding", value=True, info="Faster and deterministic. Uncheck to enable Temperature and Top-p.")
|
| 253 |
-
|
| 254 |
-
temp_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.05, value=0.7, label="Temperature")
|
| 255 |
-
top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.9, label="Top-p")
|
| 256 |
|
| 257 |
-
output_text = gr.Textbox(label="Model Raw Output", lines=
|
| 258 |
-
|
| 259 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
# --- Event Handlers ---
|
| 262 |
analyze_btn.click(
|
| 263 |
fn=analyze_and_visualize_layout,
|
| 264 |
-
inputs=[input_image, model_selector, prompt_textbox
|
| 265 |
outputs=[output_image, output_text]
|
| 266 |
)
|
| 267 |
|
| 268 |
input_image.upload(fn=clear_outputs, inputs=None, outputs=[output_image, output_text])
|
| 269 |
input_image.clear(fn=clear_outputs, inputs=None, outputs=[output_image, output_text])
|
| 270 |
-
|
| 271 |
-
greedy_checkbox.change(
|
| 272 |
-
fn=toggle_sampling_params,
|
| 273 |
-
inputs=greedy_checkbox,
|
| 274 |
-
outputs=[sampling_params]
|
| 275 |
-
)
|
| 276 |
|
| 277 |
# --- 5. Launch the Application ---
|
| 278 |
if __name__ == "__main__":
|
|
|
|
| 5 |
import json
|
| 6 |
import re
|
| 7 |
from spaces import GPU
|
|
|
|
| 8 |
|
| 9 |
# --- 1. Configurations and Constants ---
|
| 10 |
# Define user-facing names and Hugging Face IDs for the models
|
| 11 |
MODEL_BASE_NAME = "Latex2Layout-Base"
|
| 12 |
MODEL_BASE_ID = "ChaseHan/Latex2Layout-2000-sync"
|
| 13 |
|
| 14 |
+
MODEL_ENHANCED_NAME = "Latex2Layout-Enhanced"
|
| 15 |
+
MODEL_ENHANCED_ID = "ChaseHan/Latex2Layout-RL"
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# --- NEW: Add a name for the Mixing mode ---
|
| 18 |
MODEL_MIXING_NAME = "Mixing (Base + Enhanced)"
|
|
|
|
| 19 |
MODEL_CHOICES = [MODEL_BASE_NAME, MODEL_ENHANCED_NAME, MODEL_MIXING_NAME]
|
| 20 |
|
| 21 |
+
|
| 22 |
# Target image size for model input
|
| 23 |
TARGET_SIZE = (924, 1204)
|
| 24 |
|
| 25 |
# Visualization Style Constants
|
| 26 |
OUTLINE_WIDTH = 3
|
| 27 |
+
# Color mapping for different layout regions (RGBA for transparency)
|
| 28 |
LABEL_COLORS = {
|
| 29 |
+
"title": (255, 82, 82, 90), # Red
|
| 30 |
"abstract": (46, 204, 113, 90), # Green
|
| 31 |
"heading": (52, 152, 219, 90), # Blue
|
| 32 |
"footnote": (241, 196, 15, 90), # Yellow
|
|
|
|
| 46 |
# --- 2. Load Models and Processor ---
|
| 47 |
print("Loading models, this will take some time and VRAM...")
|
| 48 |
try:
|
| 49 |
+
# WARNING: Loading two 3B models without quantization requires a large amount of VRAM (>12 GB).
|
| 50 |
+
# This may fail on hardware with insufficient memory.
|
| 51 |
+
print(f"Loading {MODEL_BASE_NAME}...")
|
| 52 |
model_base = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 53 |
MODEL_BASE_ID,
|
| 54 |
torch_dtype=torch.float16,
|
| 55 |
device_map="auto"
|
| 56 |
)
|
| 57 |
|
| 58 |
+
print(f"Loading {MODEL_ENHANCED_NAME}...")
|
|
|
|
|
|
|
| 59 |
model_enhanced = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 60 |
+
MODEL_ENHANCED_ID,
|
| 61 |
+
torch_dtype=torch.float16,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
device_map="auto"
|
| 63 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# Processor is the same for both models
|
| 66 |
processor = AutoProcessor.from_pretrained(MODEL_BASE_ID)
|
| 67 |
+
print("All models loaded successfully!")
|
| 68 |
except Exception as e:
|
| 69 |
print(f"Error loading models: {e}")
|
| 70 |
exit()
|
| 71 |
|
| 72 |
+
# --- NEW: Helper function to calculate Intersection over Union ---
|
|
|
|
| 73 |
def calculate_iou(boxA, boxB):
|
| 74 |
"""Calculate Intersection over Union (IoU) of two bounding boxes."""
|
| 75 |
# Determine the coordinates of the intersection rectangle
|
|
|
|
| 91 |
# Return the IoU
|
| 92 |
return interArea / unionArea if unionArea > 0 else 0
|
| 93 |
|
| 94 |
+
# --- 3. Core Inference and Visualization Function (MODIFIED) ---
|
| 95 |
@GPU
|
| 96 |
+
def analyze_and_visualize_layout(input_image: Image.Image, selected_model_name: str, prompt: str, progress=gr.Progress(track_tqdm=True)):
|
| 97 |
"""
|
| 98 |
Takes an image and model parameters, runs inference, and returns a visualized image and raw text output.
|
| 99 |
Supports running a single model or mixing results from two models.
|
|
|
|
| 102 |
return None, "Please upload an image first."
|
| 103 |
|
| 104 |
progress(0, desc="Resizing image...")
|
| 105 |
+
image_resized = input_image.resize(TARGET_SIZE)
|
| 106 |
+
image_rgba = image_resized.convert("RGBA")
|
| 107 |
|
| 108 |
+
# --- Nested helper function to run inference on a given model ---
|
| 109 |
def run_inference(model_to_run, model_name_desc):
|
| 110 |
progress(0.1, desc=f"Preparing inputs for {model_name_desc}...")
|
| 111 |
+
messages = [{"role": "user", "content": [{"type": "image", "image": image_rgba}, {"type": "text", "text": prompt}]}]
|
| 112 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 113 |
+
inputs = processor(text=[text], images=[image_rgba], padding=True, return_tensors="pt").to(model_to_run.device)
|
| 114 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
progress(0.5, desc=f"Generating layout data with {model_name_desc}...")
|
| 116 |
with torch.no_grad():
|
| 117 |
+
output_ids = model_to_run.generate(**inputs, max_new_tokens=4096, do_sample=False)
|
| 118 |
|
| 119 |
raw_text = processor.batch_decode(output_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)[0]
|
| 120 |
|
| 121 |
try:
|
| 122 |
json_match = re.search(r"```json(.*?)```", raw_text, re.DOTALL)
|
| 123 |
json_str = json_match.group(1).strip() if json_match else raw_text.strip()
|
| 124 |
+
return json.loads(json_str), raw_text
|
|
|
|
| 125 |
except (json.JSONDecodeError, AttributeError):
|
| 126 |
+
return None, raw_text # Return raw text on failure for debugging
|
|
|
|
| 127 |
|
| 128 |
# --- Main logic: single model or mixing ---
|
| 129 |
if selected_model_name == MODEL_MIXING_NAME:
|
|
|
|
| 130 |
base_results, raw_text_base = run_inference(model_base, "Base Model")
|
| 131 |
enhanced_results, raw_text_enhanced = run_inference(model_enhanced, "Enhanced Model")
|
| 132 |
|
| 133 |
output_text = f"--- Base Model Output ---\n{raw_text_base}\n\n--- Enhanced Model Output ---\n{raw_text_enhanced}"
|
| 134 |
|
| 135 |
if base_results is None or enhanced_results is None:
|
| 136 |
+
return image_rgba.convert("RGB"), f"Failed to parse JSON from one or both models:\n\n{output_text}"
|
| 137 |
|
| 138 |
+
# Merge results based on IoU
|
| 139 |
progress(0.8, desc="Merging results from both models...")
|
| 140 |
merged_results = list(base_results)
|
| 141 |
base_bboxes = [item['bbox_2d'] for item in base_results if 'bbox_2d' in item]
|
|
|
|
| 145 |
|
| 146 |
is_duplicate = False
|
| 147 |
for base_bbox in base_bboxes:
|
| 148 |
+
if calculate_iou(enhanced_item['bbox_2d'], base_bbox) > 0.5:
|
|
|
|
| 149 |
is_duplicate = True
|
| 150 |
break
|
| 151 |
|
|
|
|
| 153 |
merged_results.append(enhanced_item)
|
| 154 |
|
| 155 |
results = merged_results
|
|
|
|
| 156 |
else:
|
| 157 |
# Run a single model
|
| 158 |
model = model_base if selected_model_name == MODEL_BASE_NAME else model_enhanced
|
| 159 |
results, output_text = run_inference(model, selected_model_name)
|
| 160 |
if results is None:
|
| 161 |
+
return image_rgba.convert("RGB"), f"Failed to parse JSON from model output:\n\n{output_text}"
|
| 162 |
|
| 163 |
# --- Visualization ---
|
| 164 |
+
progress(0.9, desc="Parsing and visualizing final results...")
|
| 165 |
+
overlay = Image.new('RGBA', image_rgba.size, (255, 255, 255, 0))
|
| 166 |
draw = ImageDraw.Draw(overlay)
|
| 167 |
|
| 168 |
try:
|
|
|
|
| 171 |
font = ImageFont.load_default()
|
| 172 |
|
| 173 |
for item in sorted(results, key=lambda x: x.get("order", 999)):
|
| 174 |
+
bbox, label, order = item.get("bbox_2d"), item.get("label", "other"), item.get("order", "")
|
|
|
|
|
|
|
| 175 |
if not bbox or len(bbox) != 4: continue
|
| 176 |
|
| 177 |
fill_color_rgba = LABEL_COLORS.get(label, LABEL_COLORS["other"])
|
|
|
|
| 185 |
draw.rectangle(tag_bg_box, fill=solid_color_rgb)
|
| 186 |
draw.text((bbox[0] + 5, bbox[1] + 3), tag_text, font=font, fill="white")
|
| 187 |
|
| 188 |
+
visualized_image = Image.alpha_composite(image_rgba, overlay).convert("RGB")
|
| 189 |
+
return visualized_image, output_text
|
| 190 |
+
|
| 191 |
|
| 192 |
def clear_outputs():
|
| 193 |
+
"""Helper function to clear the output fields."""
|
| 194 |
return None, None
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
# --- 4. Gradio User Interface ---
|
| 197 |
with gr.Blocks(theme=gr.themes.Glass(), title="Academic Paper Layout Detection") as demo:
|
| 198 |
+
|
| 199 |
gr.Markdown("# 📄 Academic Paper Layout Detection")
|
| 200 |
+
gr.Markdown(
|
| 201 |
+
"Welcome! This tool uses a Qwen2.5-VL-3B-Instruct model fine-tuned on our Latex2Layout annotated layout dataset to identify layout regions in academic papers. "
|
| 202 |
+
"Upload a document image to begin."
|
| 203 |
+
"\n> **Please note:** All uploaded images are automatically resized to 924x1204 pixels to meet the model's input requirements."
|
| 204 |
+
)
|
| 205 |
gr.Markdown("<hr>")
|
| 206 |
|
| 207 |
with gr.Row():
|
|
|
|
| 213 |
with gr.Row():
|
| 214 |
analyze_btn = gr.Button("✨ Analyze Layout", variant="primary", scale=1)
|
| 215 |
|
| 216 |
+
# --- Advanced Settings Panel ---
|
| 217 |
with gr.Accordion("Advanced Settings", open=False):
|
| 218 |
model_selector = gr.Radio(
|
| 219 |
+
choices=MODEL_CHOICES,
|
| 220 |
+
value=MODEL_BASE_NAME,
|
| 221 |
+
label="Select Model",
|
| 222 |
+
info="Choose which model to use for inference. 'Mixing' combines the results of both."
|
| 223 |
+
)
|
| 224 |
+
prompt_textbox = gr.Textbox(
|
| 225 |
+
label="Prompt",
|
| 226 |
+
value=DEFAULT_PROMPT,
|
| 227 |
+
lines=5,
|
| 228 |
+
info="The prompt used to instruct the model."
|
| 229 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
+
output_text = gr.Textbox(label="Model Raw Output", lines=8, interactive=False, visible=True)
|
| 232 |
+
|
| 233 |
+
gr.Examples(
|
| 234 |
+
examples=[["1.png"], ["2.png"], ["12.png"], ["13.png"], ["14.png"], ["11.png"], ["3.png"], ["7.png"], ["8.png"]],
|
| 235 |
+
inputs=[input_image],
|
| 236 |
+
label="Examples (Click to Run)",
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
gr.Markdown("<p style='text-align:center; color:grey;'>Powered by the Latex2Layout dataset generated by Feijiang Han</p>")
|
| 240 |
|
| 241 |
# --- Event Handlers ---
|
| 242 |
analyze_btn.click(
|
| 243 |
fn=analyze_and_visualize_layout,
|
| 244 |
+
inputs=[input_image, model_selector, prompt_textbox],
|
| 245 |
outputs=[output_image, output_text]
|
| 246 |
)
|
| 247 |
|
| 248 |
input_image.upload(fn=clear_outputs, inputs=None, outputs=[output_image, output_text])
|
| 249 |
input_image.clear(fn=clear_outputs, inputs=None, outputs=[output_image, output_text])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
# --- 5. Launch the Application ---
|
| 252 |
if __name__ == "__main__":
|