|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from dotenv import load_dotenv |
|
import os |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
|
|
client = InferenceClient("iapp/chinda-qwen3-4b", token=HF_TOKEN) |
|
|
|
|
|
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
for user_msg, bot_msg in history: |
|
if user_msg: |
|
messages.append({"role": "user", "content": user_msg}) |
|
if bot_msg: |
|
messages.append({"role": "assistant", "content": bot_msg}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for msg in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = msg.choices[0].delta.content |
|
response += token |
|
|
|
if "</think>" in response: |
|
think_split = response.split("</think>", 1) |
|
thinking = think_split[0].replace("<think>", "").strip() |
|
content = think_split[1].strip() |
|
yield f"🧠 Thinking: {thinking}\n\n💬 Response: {content}" |
|
else: |
|
yield response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|