Spaces:
Build error
Build error
import gradio as gr | |
import os | |
import cv2 | |
from PIL import Image | |
import numpy as np | |
from matplotlib import pyplot as plt | |
import random | |
from keras.utils import get_custom_objects | |
import os | |
os.environ['SM_FRAMEWORK'] = 'tf.keras' | |
import segmentation_models as sm | |
from keras import backend as K | |
from keras.models import load_model | |
class_building = '#3C1098' | |
class_building = class_building.lstrip('#') | |
class_building = np.array(tuple(int(class_building[i:i+2], 16) for i in (0,2,4))) | |
class_land = '#8429F6' | |
class_land = class_land.lstrip('#') | |
class_land = np.array(tuple(int(class_land[i:i+2], 16) for i in (0,2,4))) | |
class_road = '#6EC1E4' | |
class_road = class_road.lstrip('#') | |
class_road = np.array(tuple(int(class_road[i:i+2], 16) for i in (0,2,4))) | |
class_vegetation = '#FEDD3A' | |
class_vegetation = class_vegetation.lstrip('#') | |
class_vegetation = np.array(tuple(int(class_vegetation[i:i+2], 16) for i in (0,2,4))) | |
class_water = '#E2A929' | |
class_water = class_water.lstrip('#') | |
class_water = np.array(tuple(int(class_water[i:i+2], 16) for i in (0,2,4))) | |
class_unlabeled = '#9B9B9B' | |
class_unlabeled = class_unlabeled.lstrip('#') | |
class_unlabeled = np.array(tuple(int(class_unlabeled[i:i+2], 16) for i in (0,2,4))) | |
def jaccard_coef(y_true, y_pred): | |
y_true_flatten = K.flatten(y_true) | |
y_pred_flatten = K.flatten(y_pred) | |
intersection = K.sum(y_true_flatten * y_pred_flatten) | |
final_coef_value = (intersection + 1.0) / ( | |
K.sum(y_true_flatten) + K.sum(y_pred_flatten) - intersection + 1.0) | |
return final_coef_value | |
# six class for six weights | |
weights = [0.1666, 0.1666, 0.1666, 0.1666, 0.1666, 0.1666] | |
dice_loss = sm.losses.DiceLoss(class_weights=weights) | |
focal_loss = sm.losses.CategoricalFocalLoss() | |
total_loss = dice_loss + (1 * focal_loss) | |
satellite_model = load_model('satellite_segmentation_full_v2.h5', | |
custom_objects=({'dice_loss_plus_1focal_loss': total_loss, 'jaccard_coef': jaccard_coef})) | |
def label_to_rgb(label_segment): | |
rgb_image = np.zeros((label_segment.shape[0], label_segment.shape[1], 3), dtype=np.uint8) | |
rgb_image[label_segment == 0] = class_water | |
rgb_image[label_segment == 1] = class_land | |
rgb_image[label_segment == 2] = class_road | |
rgb_image[label_segment == 3] = class_building | |
rgb_image[label_segment == 4] = class_vegetation | |
rgb_image[label_segment == 5] = class_unlabeled | |
return rgb_image | |
def process_input_image(image_source): | |
image = np.expand_dims(image_source, 0) | |
prediction = satellite_model.predict(image) | |
predicted_image = np.argmax(prediction, axis=3) | |
predicted_image = predicted_image[0, :, :] | |
# Convert the predicted image labels to RGB | |
colored_predicted_image = label_to_rgb(predicted_image) | |
return "Predicted Masked Image", colored_predicted_image | |
my_app = gr.Blocks() | |
with my_app: | |
gr.Markdown("Image Processing Application UI with Gradio") | |
with gr.Tabs(): | |
with gr.TabItem("Select your image"): | |
with gr.Row(): | |
with gr.Column(): | |
img_source = gr.Image(label="Please select source Image", shape=(256, 256)) | |
source_image_loader = gr.Button("Load above Image") | |
with gr.Column(): | |
output_label = gr.Label(label="Image Info") | |
img_output = gr.Image(label="Image Output") | |
source_image_loader.click( | |
process_input_image, | |
[ | |
img_source | |
], | |
[ | |
output_label, | |
img_output | |
] | |
) | |
my_app.launch(debug=True) | |