|
import gradio as gr |
|
from langchain.prompts import PromptTemplate |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint |
|
from langchain_core.output_parsers import JsonOutputParser |
|
from langdetect import detect |
|
import time |
|
|
|
|
|
llm = HuggingFaceEndpoint( |
|
repo_id="mistralai/Mistral-7B-Instruct-v0.3", |
|
task="text-generation", |
|
max_new_tokens=4096, |
|
temperature=0.5, |
|
do_sample=False, |
|
) |
|
llm_engine_hf = ChatHuggingFace(llm=llm) |
|
|
|
template_classify = ''' |
|
Please carefully read the following text. The text is written in {LANG} language: |
|
|
|
<text> |
|
{TEXT} |
|
</text> |
|
|
|
After reading it, I want you to classify it in three groups: Positive, Negative, or Notr. |
|
Your final response MUST contain only the response, no other text. |
|
Example: |
|
Positive |
|
Negative |
|
Notr |
|
''' |
|
|
|
template_json = ''' |
|
Your task is to read the following text, convert it to json format using 'Answer' as key and return it. |
|
<text> |
|
{RESPONSE} |
|
</text> |
|
|
|
Your final response MUST contain only the response, no other text. |
|
Example: |
|
{{"Answer":"Positive"}} |
|
''' |
|
json_output_parser = JsonOutputParser() |
|
|
|
|
|
def classify_text(text): |
|
global llm |
|
|
|
start = time.time() |
|
lang = detect(text) |
|
|
|
prompt_classify = PromptTemplate( |
|
template=template_classify, |
|
input_variables=["LANG", "TEXT"] |
|
) |
|
formatted_prompt = prompt_classify.format(TEXT=text, LANG=lang) |
|
classify = llm.invoke(formatted_prompt) |
|
|
|
prompt_json = PromptTemplate( |
|
template=template_json, |
|
input_variables=["RESPONSE"] |
|
) |
|
|
|
formatted_prompt = template_json.format(RESPONSE=classify) |
|
response = llm.invoke(formatted_prompt) |
|
|
|
parsed_output = json_output_parser.parse(response) |
|
end = time.time() |
|
duration = end - start |
|
return parsed_output, duration |
|
|
|
|
|
def gradio_app(text): |
|
classification, time_taken = classify_text(text) |
|
return classification, f"Time taken: {time_taken:.2f} seconds" |
|
|
|
def create_gradio_interface(): |
|
with gr.Blocks() as iface: |
|
text_input = gr.Textbox(label="Text to Classify") |
|
output_text = gr.Textbox(label="Classification") |
|
time_taken = gr.Textbox(label="Time Taken (seconds)") |
|
submit_btn = gr.Button("Classify") |
|
|
|
submit_btn.click(fn=classify_text, inputs=text_input, outputs=[output_text, time_taken]) |
|
|
|
iface.launch() |
|
|
|
if __name__ == "__main__": |
|
create_gradio_interface() |
|
|