Chan-Y's picture
Update app.py
07d8aa1 verified
raw
history blame
3.35 kB
import gradio as gr
from HybridRetriever import HybridRetriever
from ChatEngine import ChatEngine
from configs import *
import warnings
warnings.simplefilter("ignore", UserWarning)
warnings.simplefilter("ignore", FutureWarning)
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core import VectorStoreIndex, Document
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
from llama_index.core.node_parser import SentenceSplitter
import fitz
from docx import Document as DocxDocument
# Configuration settings
llm = HuggingFaceLLM(model_name=MODEL_NAME,
tokenizer_name=MODEL_NAME,
system_prompt=SYSTEM_PROMPT,
context_window=CONTEXT_WINDOW,
generate_kwargs={"temperature": TEMPERATURE},
device_map=DEVICE)
embedding = HuggingFaceEmbedding(model_name=EMBEDDING_NAME,
device=DEVICE,
trust_remote_code=True)
Settings.llm = llm
Settings.embed_model = embedding
def process_file(file):
file_extension = file.name.split(".")[-1].lower()
if file_extension == 'txt':
with open(file.name, 'r', encoding='utf-8') as f:
text = f.read()
elif file_extension == 'csv':
with open(file.name, 'r', encoding='utf-8') as f:
reader = csv.reader(f)
text = '\n'.join(','.join(row) for row in reader)
elif file_extension == 'pdf':
pdf_document = fitz.open(file.name, filetype=file_extension)
text = ""
for page_num in range(pdf_document.page_count):
page = pdf_document.load_page(page_num)
text += page.get_text("text")
pdf_document.close()
elif file_extension == 'docx':
docx_document = DocxDocument(file.name)
text = ""
for paragraph in docx_document.paragraphs:
text += paragraph.text + "\n"
return [Document(text=text)]
def process_and_respond(file, question):
global llm
documents = process_file(file)
text_splitter = SentenceSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
vector_index = VectorStoreIndex.from_documents(
documents, transformations=[text_splitter], embed_model=Settings.embed_model, show_progress=True
)
bm25_retriever = BM25Retriever(nodes=documents, similarity_top_k=TOP_K, tokenizer=text_splitter.split_text)
vector_retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=TOP_K)
hybrid_retriever = HybridRetriever(bm25_retriever=bm25_retriever, vector_retriever=vector_retriever)
chat_engine = ChatEngine(hybrid_retriever)
response = chat_engine.ask_question(question, llm)
return response
with gr.Blocks() as demo:
gr.Markdown("## Chat with Your Documents!")
text_input = gr.Textbox(label="Ask a Question:")
file_uploader = gr.File(label="Upload a File:")
response_box = gr.TextArea(max_lines=50)
submit_button = gr.Button("Submit")
submit_button.click(
fn=process_and_respond,
inputs=[file_uploader, text_input],
outputs=response_box
)
demo.launch()