ChatCSV / tools /visualization_bk.py
Chamin09's picture
Rename tools/visualization.py to tools/visualization_bk.py
bbd9a98 verified
from typing import Dict, List, Any, Optional, Tuple, Union
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
import io
import base64
import numpy as np
from llama_index.tools import FunctionTool
from pathlib import Path
# Configure matplotlib for non-interactive environments
matplotlib.use('Agg')
class VisualizationTools:
"""Tools for creating visualizations from CSV data."""
def __init__(self, csv_directory: str):
"""Initialize with directory containing CSV files."""
self.csv_directory = csv_directory
self.dataframes = {}
self.tools = self._create_tools()
self.figure_size = (10, 6)
self.dpi = 100
def _load_dataframe(self, filename: str) -> pd.DataFrame:
"""Load a CSV file as DataFrame, with caching."""
if filename not in self.dataframes:
file_path = Path(self.csv_directory) / filename
if not file_path.exists() and not filename.endswith('.csv'):
file_path = Path(self.csv_directory) / f"{filename}.csv"
if file_path.exists():
self.dataframes[filename] = pd.read_csv(file_path)
else:
raise ValueError(f"CSV file not found: {filename}")
return self.dataframes[filename]
def _create_tools(self) -> List[FunctionTool]:
"""Create LlamaIndex function tools for visualizations."""
tools = [
FunctionTool.from_defaults(
name="create_line_chart",
description="Create a line chart from CSV data",
fn=self.create_line_chart
),
FunctionTool.from_defaults(
name="create_bar_chart",
description="Create a bar chart from CSV data",
fn=self.create_bar_chart
),
FunctionTool.from_defaults(
name="create_scatter_plot",
description="Create a scatter plot from CSV data",
fn=self.create_scatter_plot
),
FunctionTool.from_defaults(
name="create_histogram",
description="Create a histogram from CSV data",
fn=self.create_histogram
),
FunctionTool.from_defaults(
name="create_pie_chart",
description="Create a pie chart from CSV data",
fn=self.create_pie_chart
)
]
return tools
def get_tools(self) -> List[FunctionTool]:
"""Get all available visualization tools."""
return self.tools
def _figure_to_base64(self, fig) -> str:
"""Convert matplotlib figure to base64 encoded string."""
buf = io.BytesIO()
fig.savefig(buf, format='png', dpi=self.dpi)
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode('utf-8')
plt.close(fig)
return img_str
# Visualization tool implementations
def create_line_chart(self, filename: str, x_column: str, y_column: str,
title: str = None, limit: int = 50) -> Dict[str, Any]:
"""Create a line chart visualization."""
df = self._load_dataframe(filename)
# Limit data points if needed
if len(df) > limit:
df = df.head(limit)
fig, ax = plt.subplots(figsize=self.figure_size)
# Create line chart
ax.plot(df[x_column], df[y_column], marker='o', linestyle='-')
# Set labels and title
ax.set_xlabel(x_column)
ax.set_ylabel(y_column)
ax.set_title(title or f"{y_column} vs {x_column}")
ax.grid(True)
# Convert to base64
img_str = self._figure_to_base64(fig)
return {
"chart_type": "line",
"x_column": x_column,
"y_column": y_column,
"data_points": len(df),
"image": img_str
}
def create_bar_chart(self, filename: str, x_column: str, y_column: str,
title: str = None, limit: int = 20) -> Dict[str, Any]:
"""Create a bar chart visualization."""
df = self._load_dataframe(filename)
# Limit categories if needed
if len(df) > limit:
df = df.head(limit)
fig, ax = plt.subplots(figsize=self.figure_size)
# Create bar chart
ax.bar(df[x_column], df[y_column])
# Set labels and title
ax.set_xlabel(x_column)
ax.set_ylabel(y_column)
ax.set_title(title or f"{y_column} by {x_column}")
# Rotate x labels if there are many categories
if len(df) > 5:
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
# Convert to base64
img_str = self._figure_to_base64(fig)
return {
"chart_type": "bar",
"x_column": x_column,
"y_column": y_column,
"categories": len(df),
"image": img_str
}
def create_scatter_plot(self, filename: str, x_column: str, y_column: str,
color_column: str = None, title: str = None) -> Dict[str, Any]:
"""Create a scatter plot visualization."""
df = self._load_dataframe(filename)
fig, ax = plt.subplots(figsize=self.figure_size)
# Create scatter plot
if color_column and color_column in df.columns:
scatter = ax.scatter(df[x_column], df[y_column], c=df[color_column], cmap='viridis', alpha=0.7)
plt.colorbar(scatter, ax=ax, label=color_column)
else:
ax.scatter(df[x_column], df[y_column], alpha=0.7)
# Set labels and title
ax.set_xlabel(x_column)
ax.set_ylabel(y_column)
ax.set_title(title or f"{y_column} vs {x_column}")
ax.grid(True, linestyle='--', alpha=0.7)
# Convert to base64
img_str = self._figure_to_base64(fig)
return {
"chart_type": "scatter",
"x_column": x_column,
"y_column": y_column,
"color_column": color_column,
"data_points": len(df),
"image": img_str
}
def create_histogram(self, filename: str, column: str, bins: int = 10,
title: str = None) -> Dict[str, Any]:
"""Create a histogram visualization."""
df = self._load_dataframe(filename)
fig, ax = plt.subplots(figsize=self.figure_size)
# Create histogram
ax.hist(df[column], bins=bins, alpha=0.7, edgecolor='black')
# Set labels and title
ax.set_xlabel(column)
ax.set_ylabel('Frequency')
ax.set_title(title or f"Distribution of {column}")
ax.grid(True, linestyle='--', alpha=0.7)
# Convert to base64
img_str = self._figure_to_base64(fig)
return {
"chart_type": "histogram",
"column": column,
"bins": bins,
"data_points": len(df),
"image": img_str
}
def create_pie_chart(self, filename: str, label_column: str, value_column: str = None,
title: str = None, limit: int = 10) -> Dict[str, Any]:
"""Create a pie chart visualization."""
df = self._load_dataframe(filename)
# If value column not provided, count occurrences of each label
if value_column is None:
data = df[label_column].value_counts().head(limit)
labels = data.index.tolist()
values = data.values.tolist()
else:
# Group by label and sum values
grouped = df.groupby(label_column)[value_column].sum().reset_index()
# Limit to top categories
grouped = grouped.nlargest(limit, value_column)
labels = grouped[label_column].tolist()
values = grouped[value_column].tolist()
fig, ax = plt.subplots(figsize=self.figure_size)
# Create pie chart
ax.pie(values, labels=labels, autopct='%1.1f%%', startangle=90, shadow=True)
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
# Set title
ax.set_title(title or f"Distribution of {label_column}")
# Convert to base64
img_str = self._figure_to_base64(fig)
return {
"chart_type": "pie",
"label_column": label_column,
"value_column": value_column,
"categories": len(labels),
"image": img_str
}