|
import torch |
|
from transformers import pipeline |
|
|
|
class DummyLLM: |
|
"""A simple dummy LLM for testing.""" |
|
|
|
def __init__(self): |
|
"""Initialize the dummy LLM.""" |
|
pass |
|
|
|
def complete(self, prompt): |
|
"""Complete a prompt with a simple response.""" |
|
class Response: |
|
def __init__(self, text): |
|
self.text = text |
|
|
|
|
|
return Response("This is a placeholder response. The actual model is not loaded to save resources.") |
|
|
|
def setup_llm(): |
|
"""Set up a simple LLM for testing.""" |
|
try: |
|
|
|
generator = pipeline( |
|
"text-generation", |
|
model="distilgpt2", |
|
max_length=100 |
|
) |
|
|
|
|
|
class SimpleTransformersLLM: |
|
def complete(self, prompt): |
|
class Response: |
|
def __init__(self, text): |
|
self.text = text |
|
|
|
try: |
|
result = generator(prompt, max_length=len(prompt) + 50, do_sample=True)[0] |
|
generated_text = result["generated_text"] |
|
response_text = generated_text[len(prompt):].strip() |
|
if not response_text: |
|
response_text = "I couldn't generate a proper response." |
|
return Response(response_text) |
|
except Exception as e: |
|
print(f"Error generating response: {e}") |
|
return Response("Error generating response.") |
|
|
|
return SimpleTransformersLLM() |
|
|
|
except Exception as e: |
|
print(f"Error setting up model: {e}") |
|
return DummyLLM() |
|
|