Spaces:
Runtime error
Runtime error
yanqiang
commited on
Commit
•
bd111f7
1
Parent(s):
96a6f43
update
Browse files- .gitignore +2 -0
- README.md +2 -1
- cache/index.faiss +0 -0
- cache/index.pkl +0 -0
- create_knowledge.py +30 -0
- images/result.png +0 -0
- images/web_demo.png +0 -0
- main.py +25 -13
- tests/test_duckduckgo_search.py +4 -4
- tests/test_langchain.py +3 -3
.gitignore
CHANGED
@@ -1 +1,3 @@
|
|
1 |
.idea
|
|
|
|
|
|
1 |
.idea
|
2 |
+
cache
|
3 |
+
docs/zh_wikipedia
|
README.md
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
|
5 |
## 🔥 效果演示
|
6 |
|
7 |
-
![](https://github.com/yanqiangmiffy/Chinese-LangChain/blob/master/images/
|
8 |
|
9 |
## 🚀 特性
|
10 |
|
@@ -22,6 +22,7 @@
|
|
22 |
* [ ] 检索结果过滤与排序
|
23 |
* [ ] 互联网检索结果接入
|
24 |
* [ ] 模型初始化有问题
|
|
|
25 |
|
26 |
## 交流
|
27 |
欢迎多提建议、Bad cases,目前尚不完善,欢迎进群及时交流,也欢迎大家多提PR
|
|
|
4 |
|
5 |
## 🔥 效果演示
|
6 |
|
7 |
+
![](https://github.com/yanqiangmiffy/Chinese-LangChain/blob/master/images/web_demo.png)
|
8 |
|
9 |
## 🚀 特性
|
10 |
|
|
|
22 |
* [ ] 检索结果过滤与排序
|
23 |
* [ ] 互联网检索结果接入
|
24 |
* [ ] 模型初始化有问题
|
25 |
+
* [ ] 增加非LangChain策略
|
26 |
|
27 |
## 交流
|
28 |
欢迎多提建议、Bad cases,目前尚不完善,欢迎进群及时交流,也欢迎大家多提PR
|
cache/index.faiss
DELETED
Binary file (53.3 kB)
|
|
cache/index.pkl
DELETED
Binary file (5.43 kB)
|
|
create_knowledge.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding:utf-8 _*-
|
3 |
+
"""
|
4 |
+
@author:quincy qiang
|
5 |
+
@license: Apache Licence
|
6 |
+
@file: create_knowledge.py
|
7 |
+
@time: 2023/04/18
|
8 |
+
@contact: yanqiangmiffy@gamil.com
|
9 |
+
@software: PyCharm
|
10 |
+
@description: coding..
|
11 |
+
"""
|
12 |
+
from langchain.docstore.document import Document
|
13 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
14 |
+
from langchain.vectorstores import FAISS
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
# 中文Wikipedia数据导入示例:
|
18 |
+
embedding_model_name = '/home/searchgpt/pretrained_models/ernie-gram-zh'
|
19 |
+
docs_path = '/home/searchgpt/yq/Knowledge-ChatGLM/docs'
|
20 |
+
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_name)
|
21 |
+
|
22 |
+
docs = []
|
23 |
+
|
24 |
+
with open('docs/zh_wikipedia/zhwiki.sim.utf8', 'r', encoding='utf-8') as f:
|
25 |
+
for idx, line in tqdm(enumerate(f.readlines())):
|
26 |
+
metadata = {"source": f'doc_id_{idx}'}
|
27 |
+
docs.append(Document(page_content=line.strip(), metadata=metadata))
|
28 |
+
|
29 |
+
vector_store = FAISS.from_documents(docs, embeddings)
|
30 |
+
vector_store.save_local('cache/zh_wikipedia/')
|
images/result.png
DELETED
Binary file (72.3 kB)
|
|
images/web_demo.png
ADDED
main.py
CHANGED
@@ -10,8 +10,8 @@ os.environ["CUDA_VISIBLE_DEVICES"] = '0'
|
|
10 |
|
11 |
# 修改成自己的配置!!!
|
12 |
class LangChainCFG:
|
13 |
-
llm_model_name = '
|
14 |
-
embedding_model_name = '
|
15 |
vector_store_path = './cache'
|
16 |
docs_path = './docs'
|
17 |
|
@@ -91,19 +91,24 @@ with block as demo:
|
|
91 |
label="large language model",
|
92 |
value="ChatGLM-6B-int4")
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
file.upload(upload_file,
|
105 |
inputs=file,
|
106 |
-
outputs=
|
107 |
with gr.Column(scale=4):
|
108 |
with gr.Row():
|
109 |
with gr.Column(scale=4):
|
@@ -137,4 +142,11 @@ with block as demo:
|
|
137 |
],
|
138 |
outputs=[message, chatbot, state, search])
|
139 |
|
140 |
-
demo.queue(concurrency_count=2).launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# 修改成自己的配置!!!
|
12 |
class LangChainCFG:
|
13 |
+
llm_model_name = '../../pretrained_models/chatglm-6b-int4-qe' # 本地模型文件 or huggingface远程仓库
|
14 |
+
embedding_model_name = '../../pretrained_models/text2vec-large-chinese' # 检索模型文件 or huggingface远程仓库
|
15 |
vector_store_path = './cache'
|
16 |
docs_path = './docs'
|
17 |
|
|
|
91 |
label="large language model",
|
92 |
value="ChatGLM-6B-int4")
|
93 |
|
94 |
+
top_k = gr.Slider(1,
|
95 |
+
20,
|
96 |
+
value=2,
|
97 |
+
step=1,
|
98 |
+
label="向量匹配 top k",
|
99 |
+
interactive=True)
|
100 |
+
kg_name = gr.Radio(['中文维基百科', '百度百科数据', '坦克世界'],
|
101 |
+
label="知识库",
|
102 |
+
value='中文维基百科',
|
103 |
+
interactive=True)
|
104 |
+
file = gr.File(label="将文件上传到数据库",
|
105 |
+
visible=True,
|
106 |
+
file_types=['.txt', '.md', '.docx', '.pdf']
|
107 |
+
)
|
108 |
|
109 |
file.upload(upload_file,
|
110 |
inputs=file,
|
111 |
+
outputs=None)
|
112 |
with gr.Column(scale=4):
|
113 |
with gr.Row():
|
114 |
with gr.Column(scale=4):
|
|
|
142 |
],
|
143 |
outputs=[message, chatbot, state, search])
|
144 |
|
145 |
+
demo.queue(concurrency_count=2).launch(
|
146 |
+
server_name='0.0.0.0',
|
147 |
+
server_port=8888,
|
148 |
+
share=False,
|
149 |
+
show_error=True,
|
150 |
+
debug=True,
|
151 |
+
enable_queue=True
|
152 |
+
)
|
tests/test_duckduckgo_search.py
CHANGED
@@ -2,9 +2,9 @@ from duckduckgo_search import ddg
|
|
2 |
from duckduckgo_search.utils import SESSION
|
3 |
|
4 |
|
5 |
-
SESSION.proxies = {
|
6 |
-
|
7 |
-
|
8 |
-
}
|
9 |
r = ddg("马保国")
|
10 |
print(r)
|
|
|
2 |
from duckduckgo_search.utils import SESSION
|
3 |
|
4 |
|
5 |
+
# SESSION.proxies = {
|
6 |
+
# "http": f"socks5h://localhost:7890",
|
7 |
+
# "https": f"socks5h://localhost:7890"
|
8 |
+
# }
|
9 |
r = ddg("马保国")
|
10 |
print(r)
|
tests/test_langchain.py
CHANGED
@@ -4,8 +4,8 @@ from langchain.document_loaders import UnstructuredFileLoader
|
|
4 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
5 |
from langchain.vectorstores import FAISS
|
6 |
|
7 |
-
embedding_model_name = 'pretrained_models/ernie-gram-zh'
|
8 |
-
docs_path = 'docs'
|
9 |
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_name)
|
10 |
|
11 |
docs = []
|
@@ -22,7 +22,7 @@ vector_store.save_local('vector_store_local')
|
|
22 |
search_result = vector_store.similarity_search_with_score(query='科比', k=2)
|
23 |
print(search_result)
|
24 |
|
25 |
-
loader = UnstructuredFileLoader(f'{docs_path}/added
|
26 |
doc = loader.load()
|
27 |
vector_store.add_documents(doc)
|
28 |
print(doc)
|
|
|
4 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
5 |
from langchain.vectorstores import FAISS
|
6 |
|
7 |
+
embedding_model_name = '/home/searchgpt/pretrained_models/ernie-gram-zh'
|
8 |
+
docs_path = '/home/searchgpt/yq/Knowledge-ChatGLM/docs'
|
9 |
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_name)
|
10 |
|
11 |
docs = []
|
|
|
22 |
search_result = vector_store.similarity_search_with_score(query='科比', k=2)
|
23 |
print(search_result)
|
24 |
|
25 |
+
loader = UnstructuredFileLoader(f'{docs_path}/added/马保国.txt', mode="elements")
|
26 |
doc = loader.load()
|
27 |
vector_store.add_documents(doc)
|
28 |
print(doc)
|