|
""" |
|
Defines helper methods useful for loading and caching Interface examples. |
|
""" |
|
from __future__ import annotations |
|
|
|
import ast |
|
import csv |
|
import os |
|
import warnings |
|
from pathlib import Path |
|
from typing import TYPE_CHECKING, Any, Callable, List |
|
|
|
from gradio import utils |
|
from gradio.components import Dataset |
|
from gradio.context import Context |
|
from gradio.documentation import document, set_documentation_group |
|
from gradio.flagging import CSVLogger |
|
|
|
if TYPE_CHECKING: |
|
from gradio.components import IOComponent |
|
|
|
CACHED_FOLDER = "gradio_cached_examples" |
|
LOG_FILE = "log.csv" |
|
|
|
set_documentation_group("component-helpers") |
|
|
|
|
|
def create_examples( |
|
examples: List[Any] | List[List[Any]] | str, |
|
inputs: IOComponent | List[IOComponent], |
|
outputs: IOComponent | List[IOComponent] | None = None, |
|
fn: Callable | None = None, |
|
cache_examples: bool = False, |
|
examples_per_page: int = 10, |
|
_api_mode: bool = False, |
|
label: str | None = None, |
|
elem_id: str | None = None, |
|
run_on_click: bool = False, |
|
preprocess: bool = True, |
|
postprocess: bool = True, |
|
batch: bool = False, |
|
): |
|
"""Top-level synchronous function that creates Examples. Provided for backwards compatibility, i.e. so that gr.Examples(...) can be used to create the Examples component.""" |
|
examples_obj = Examples( |
|
examples=examples, |
|
inputs=inputs, |
|
outputs=outputs, |
|
fn=fn, |
|
cache_examples=cache_examples, |
|
examples_per_page=examples_per_page, |
|
_api_mode=_api_mode, |
|
label=label, |
|
elem_id=elem_id, |
|
run_on_click=run_on_click, |
|
preprocess=preprocess, |
|
postprocess=postprocess, |
|
batch=batch, |
|
_initiated_directly=False, |
|
) |
|
utils.synchronize_async(examples_obj.create) |
|
return examples_obj |
|
|
|
|
|
@document() |
|
class Examples: |
|
""" |
|
This class is a wrapper over the Dataset component and can be used to create Examples |
|
for Blocks / Interfaces. Populates the Dataset component with examples and |
|
assigns event listener so that clicking on an example populates the input/output |
|
components. Optionally handles example caching for fast inference. |
|
|
|
Demos: blocks_inputs, fake_gan |
|
Guides: more_on_examples_and_flagging, using_hugging_face_integrations, image_classification_in_pytorch, image_classification_in_tensorflow, image_classification_with_vision_transformers, create_your_own_friends_with_a_gan |
|
""" |
|
|
|
def __init__( |
|
self, |
|
examples: List[Any] | List[List[Any]] | str, |
|
inputs: IOComponent | List[IOComponent], |
|
outputs: IOComponent | List[IOComponent] | None = None, |
|
fn: Callable | None = None, |
|
cache_examples: bool = False, |
|
examples_per_page: int = 10, |
|
_api_mode: bool = False, |
|
label: str | None = "Examples", |
|
elem_id: str | None = None, |
|
run_on_click: bool = False, |
|
preprocess: bool = True, |
|
postprocess: bool = True, |
|
batch: bool = False, |
|
_initiated_directly: bool = True, |
|
): |
|
""" |
|
Parameters: |
|
examples: example inputs that can be clicked to populate specific components. Should be nested list, in which the outer list consists of samples and each inner list consists of an input corresponding to each input component. A string path to a directory of examples can also be provided but it should be within the directory with the python file running the gradio app. If there are multiple input components and a directory is provided, a log.csv file must be present in the directory to link corresponding inputs. |
|
inputs: the component or list of components corresponding to the examples |
|
outputs: optionally, provide the component or list of components corresponding to the output of the examples. Required if `cache` is True. |
|
fn: optionally, provide the function to run to generate the outputs corresponding to the examples. Required if `cache` is True. |
|
cache_examples: if True, caches examples for fast runtime. If True, then `fn` and `outputs` need to be provided |
|
examples_per_page: how many examples to show per page. |
|
label: the label to use for the examples component (by default, "Examples") |
|
elem_id: an optional string that is assigned as the id of this component in the HTML DOM. |
|
run_on_click: if cache_examples is False, clicking on an example does not run the function when an example is clicked. Set this to True to run the function when an example is clicked. Has no effect if cache_examples is True. |
|
preprocess: if True, preprocesses the example input before running the prediction function and caching the output. Only applies if cache_examples is True. |
|
postprocess: if True, postprocesses the example output after running the prediction function and before caching. Only applies if cache_examples is True. |
|
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. Used only if cache_examples is True. |
|
""" |
|
if _initiated_directly: |
|
warnings.warn( |
|
"Please use gr.Examples(...) instead of gr.examples.Examples(...) to create the Examples.", |
|
) |
|
|
|
if cache_examples and (fn is None or outputs is None): |
|
raise ValueError("If caching examples, `fn` and `outputs` must be provided") |
|
|
|
if not isinstance(inputs, list): |
|
inputs = [inputs] |
|
if outputs and not isinstance(outputs, list): |
|
outputs = [outputs] |
|
|
|
working_directory = Path().absolute() |
|
|
|
if examples is None: |
|
raise ValueError("The parameter `examples` cannot be None") |
|
elif isinstance(examples, list) and ( |
|
len(examples) == 0 or isinstance(examples[0], list) |
|
): |
|
pass |
|
elif ( |
|
isinstance(examples, list) and len(inputs) == 1 |
|
): |
|
examples = [[e] for e in examples] |
|
elif isinstance(examples, str): |
|
if not Path(examples).exists(): |
|
raise FileNotFoundError( |
|
"Could not find examples directory: " + examples |
|
) |
|
working_directory = examples |
|
if not (Path(examples) / LOG_FILE).exists(): |
|
if len(inputs) == 1: |
|
examples = [[e] for e in os.listdir(examples)] |
|
else: |
|
raise FileNotFoundError( |
|
"Could not find log file (required for multiple inputs): " |
|
+ LOG_FILE |
|
) |
|
else: |
|
with open(Path(examples) / LOG_FILE) as logs: |
|
examples = list(csv.reader(logs)) |
|
examples = [ |
|
examples[i][: len(inputs)] for i in range(1, len(examples)) |
|
] |
|
|
|
else: |
|
raise ValueError( |
|
"The parameter `examples` must either be a string directory or a list" |
|
"(if there is only 1 input component) or (more generally), a nested " |
|
"list, where each sublist represents a set of inputs." |
|
) |
|
|
|
input_has_examples = [False] * len(inputs) |
|
for example in examples: |
|
for idx, example_for_input in enumerate(example): |
|
if not (example_for_input is None): |
|
try: |
|
input_has_examples[idx] = True |
|
except IndexError: |
|
pass |
|
|
|
inputs_with_examples = [ |
|
inp for (inp, keep) in zip(inputs, input_has_examples) if keep |
|
] |
|
non_none_examples = [ |
|
[ex for (ex, keep) in zip(example, input_has_examples) if keep] |
|
for example in examples |
|
] |
|
|
|
self.examples = examples |
|
self.non_none_examples = non_none_examples |
|
self.inputs = inputs |
|
self.inputs_with_examples = inputs_with_examples |
|
self.outputs = outputs |
|
self.fn = fn |
|
self.cache_examples = cache_examples |
|
self._api_mode = _api_mode |
|
self.preprocess = preprocess |
|
self.postprocess = postprocess |
|
self.batch = batch |
|
|
|
with utils.set_directory(working_directory): |
|
self.processed_examples = [ |
|
[ |
|
component.postprocess(sample) |
|
for component, sample in zip(inputs, example) |
|
] |
|
for example in examples |
|
] |
|
self.non_none_processed_examples = [ |
|
[ex for (ex, keep) in zip(example, input_has_examples) if keep] |
|
for example in self.processed_examples |
|
] |
|
if cache_examples: |
|
for example in self.examples: |
|
if len([ex for ex in example if ex is not None]) != len(self.inputs): |
|
warnings.warn( |
|
"Examples are being cached but not all input components have " |
|
"example values. This may result in an exception being thrown by " |
|
"your function. If you do get an error while caching examples, make " |
|
"sure all of your inputs have example values for all of your examples " |
|
"or you provide default values for those particular parameters in your function." |
|
) |
|
break |
|
|
|
with utils.set_directory(working_directory): |
|
self.dataset = Dataset( |
|
components=inputs_with_examples, |
|
samples=non_none_examples, |
|
type="index", |
|
label=label, |
|
samples_per_page=examples_per_page, |
|
elem_id=elem_id, |
|
) |
|
|
|
self.cached_folder = Path(CACHED_FOLDER) / str(self.dataset._id) |
|
self.cached_file = Path(self.cached_folder) / "log.csv" |
|
self.cache_examples = cache_examples |
|
self.run_on_click = run_on_click |
|
|
|
async def create(self) -> None: |
|
"""Caches the examples if self.cache_examples is True and creates the Dataset |
|
component to hold the examples""" |
|
|
|
async def load_example(example_id): |
|
if self.cache_examples: |
|
processed_example = self.non_none_processed_examples[ |
|
example_id |
|
] + await self.load_from_cache(example_id) |
|
else: |
|
processed_example = self.non_none_processed_examples[example_id] |
|
return utils.resolve_singleton(processed_example) |
|
|
|
if Context.root_block: |
|
if self.cache_examples and self.outputs: |
|
targets = self.inputs_with_examples |
|
else: |
|
targets = self.inputs |
|
self.dataset.click( |
|
load_example, |
|
inputs=[self.dataset], |
|
outputs=targets, |
|
postprocess=False, |
|
queue=False, |
|
) |
|
if self.run_on_click and not self.cache_examples: |
|
if self.fn is None: |
|
raise ValueError("Cannot run_on_click if no function is provided") |
|
self.dataset.click( |
|
self.fn, |
|
inputs=self.inputs, |
|
outputs=self.outputs, |
|
) |
|
|
|
if self.cache_examples: |
|
await self.cache() |
|
|
|
async def cache(self) -> None: |
|
""" |
|
Caches all of the examples so that their predictions can be shown immediately. |
|
""" |
|
if Path(self.cached_file).exists(): |
|
print( |
|
f"Using cache from '{Path(self.cached_folder).resolve()}' directory. If method or examples have changed since last caching, delete this folder to clear cache." |
|
) |
|
else: |
|
if Context.root_block is None: |
|
raise ValueError("Cannot cache examples if not in a Blocks context") |
|
|
|
print(f"Caching examples at: '{Path(self.cached_file).resolve()}'") |
|
cache_logger = CSVLogger() |
|
|
|
|
|
dependency = Context.root_block.set_event_trigger( |
|
event_name="fake_event", |
|
fn=self.fn, |
|
inputs=self.inputs_with_examples, |
|
outputs=self.outputs, |
|
preprocess=self.preprocess and not self._api_mode, |
|
postprocess=self.postprocess and not self._api_mode, |
|
batch=self.batch, |
|
) |
|
|
|
fn_index = Context.root_block.dependencies.index(dependency) |
|
assert self.outputs is not None |
|
cache_logger.setup(self.outputs, self.cached_folder) |
|
for example_id, _ in enumerate(self.examples): |
|
processed_input = self.processed_examples[example_id] |
|
if self.batch: |
|
processed_input = [[value] for value in processed_input] |
|
prediction = await Context.root_block.process_api( |
|
fn_index=fn_index, inputs=processed_input, request=None, state={} |
|
) |
|
output = prediction["data"] |
|
if self.batch: |
|
output = [value[0] for value in output] |
|
cache_logger.flag(output) |
|
|
|
Context.root_block.dependencies.remove(dependency) |
|
Context.root_block.fns.pop(fn_index) |
|
|
|
async def load_from_cache(self, example_id: int) -> List[Any]: |
|
"""Loads a particular cached example for the interface. |
|
Parameters: |
|
example_id: The id of the example to process (zero-indexed). |
|
""" |
|
with open(self.cached_file) as cache: |
|
examples = list(csv.reader(cache)) |
|
example = examples[example_id + 1] |
|
output = [] |
|
assert self.outputs is not None |
|
for component, value in zip(self.outputs, example): |
|
try: |
|
value_as_dict = ast.literal_eval(value) |
|
assert utils.is_update(value_as_dict) |
|
output.append(value_as_dict) |
|
except (ValueError, TypeError, SyntaxError, AssertionError): |
|
output.append(component.serialize(value, self.cached_folder)) |
|
return output |
|
|