CesarLeblanc commited on
Commit
b8df8bd
1 Parent(s): e2c9e6d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -9
app.py CHANGED
@@ -57,8 +57,8 @@ def return_species_image(species):
57
  image = gr.Image(value=image_url)
58
  return image
59
 
60
- def classification(text, typology, confidence, task):
61
- model = return_model(task)
62
  dataset = return_dataset()
63
  result = model(text)
64
  habitat_label = result[0]['label']
@@ -68,8 +68,8 @@ def classification(text, typology, confidence, task):
68
  image_output = return_habitat_image(habitat_label, habitat_score, confidence)
69
  return formatted_output, image_output
70
 
71
- def masking(text, task):
72
- model = return_model(task)
73
  masked_text = text + ', [MASK] [MASK]'
74
  pred = model(masked_text, top_k=1)
75
  new_species = [pred[i][0]['token_str'] for i in range(len(pred))]
@@ -84,14 +84,13 @@ with gr.Blocks() as demo:
84
  species = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
85
  typology = gr.Dropdown(["EUNIS"], value="EUNIS", label="Typology", info="Will add more typologies later!")
86
  confidence = gr.Slider(0, 100, value=90, label="Confidence", info="Choose the level of confidence for the prediction.")
87
- task = gr.Radio(["classification", "masking"], value="classification", label="Task", info="Which task to choose?")
88
- text_output_1 = gr.Textbox()
89
- text_output_2 = gr.Image()
90
  text_button = gr.Button("Classify")
91
  with gr.Tab("Missing species finding"):
 
92
  with gr.Row():
93
- species_2 = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
94
- task_2 = gr.Radio(["classification", "masking"], value="classification", label="Task", info="Which task to choose?")
95
  image_output_1 = gr.Textbox()
96
  image_output_2 = gr.Image()
97
  image_button = gr.Button("Find")
 
57
  image = gr.Image(value=image_url)
58
  return image
59
 
60
+ def classification(text, typology, confidence):
61
+ model = return_model("classification")
62
  dataset = return_dataset()
63
  result = model(text)
64
  habitat_label = result[0]['label']
 
68
  image_output = return_habitat_image(habitat_label, habitat_score, confidence)
69
  return formatted_output, image_output
70
 
71
+ def masking(text):
72
+ model = return_model("masking")
73
  masked_text = text + ', [MASK] [MASK]'
74
  pred = model(masked_text, top_k=1)
75
  new_species = [pred[i][0]['token_str'] for i in range(len(pred))]
 
84
  species = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
85
  typology = gr.Dropdown(["EUNIS"], value="EUNIS", label="Typology", info="Will add more typologies later!")
86
  confidence = gr.Slider(0, 100, value=90, label="Confidence", info="Choose the level of confidence for the prediction.")
87
+ with gr.Row():
88
+ text_output_1 = gr.Textbox()
89
+ text_output_2 = gr.Image()
90
  text_button = gr.Button("Classify")
91
  with gr.Tab("Missing species finding"):
92
+ species_2 = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
93
  with gr.Row():
 
 
94
  image_output_1 = gr.Textbox()
95
  image_output_2 = gr.Image()
96
  image_button = gr.Button("Find")