Spaces:
Running
Running
CesarLeblanc
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -82,10 +82,50 @@ def classification(text, typology, confidence):
|
|
82 |
|
83 |
def masking(text):
|
84 |
text = gbif_normalization(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
masked_text = text + ', [MASK]'
|
86 |
pred = mask_model(masked_text)[0]
|
87 |
new_species = pred['token_str']
|
88 |
-
text = f"The
|
89 |
image = return_species_image(new_species)
|
90 |
return text, image
|
91 |
|
|
|
82 |
|
83 |
def masking(text):
|
84 |
text = gbif_normalization(text)
|
85 |
+
|
86 |
+
max_score = 0
|
87 |
+
best_prediction = None
|
88 |
+
best_position = None
|
89 |
+
|
90 |
+
# Case for the first position
|
91 |
+
masked_text = "[MASK], " + ', '.join(text.split(', '))
|
92 |
+
prediction = mask_model(masked_text)[0]
|
93 |
+
species = prediction['token_str']
|
94 |
+
score = prediction['score']
|
95 |
+
|
96 |
+
if score > max_score:
|
97 |
+
max_score = score
|
98 |
+
best_prediction = species
|
99 |
+
best_position = 0
|
100 |
+
|
101 |
+
# Loop through each position in the middle of the sentence
|
102 |
+
for i in range(1, len(text.split(', '))):
|
103 |
+
masked_text = ', '.join(text.split(', ')[:i]) + ', [MASK], ' + ', '.join(text.split(', ')[i:])
|
104 |
+
prediction = mask_model(masked_text)[0]
|
105 |
+
species = prediction['token_str']
|
106 |
+
score = prediction['score']
|
107 |
+
|
108 |
+
# Update best prediction and position if score is higher
|
109 |
+
if score > max_score:
|
110 |
+
max_score = score
|
111 |
+
best_prediction = species
|
112 |
+
best_position = i
|
113 |
+
|
114 |
+
# Case for the last position
|
115 |
+
masked_text = ', '.join(text.split(', ')) + ', [MASK]'
|
116 |
+
prediction = mask_model(masked_text)[0]
|
117 |
+
species = prediction['token_str']
|
118 |
+
score = prediction['score']
|
119 |
+
|
120 |
+
if score > max_score:
|
121 |
+
max_score = score
|
122 |
+
best_prediction = species
|
123 |
+
best_position = len(text.split(', '))
|
124 |
+
|
125 |
masked_text = text + ', [MASK]'
|
126 |
pred = mask_model(masked_text)[0]
|
127 |
new_species = pred['token_str']
|
128 |
+
text = f"The most likely missing species in position {best_position} is: {best_species}".
|
129 |
image = return_species_image(new_species)
|
130 |
return text, image
|
131 |
|