Spaces:
Running
Running
from transformers import pipeline | |
import base64 | |
import gradio as gr | |
model_id = "openai/whisper-medium" # update with your model id | |
#model_id ="openai/whisper-tiny" | |
pipe = pipeline("automatic-speech-recognition", model=model_id) | |
def transcribe_speech(filepath): | |
output = pipe( | |
filepath, | |
max_new_tokens=256, | |
generate_kwargs={ | |
"task": "transcribe", | |
"language": "spanish", | |
}, # update with the language you've fine-tuned on | |
chunk_length_s=30, | |
batch_size=8, | |
) | |
return output["text"] | |
with open("Iso_Logotipo_Ceibal.png", "rb") as image_file: | |
encoded_image = base64.b64encode(image_file.read()).decode() | |
demo = gr.Blocks() | |
mic_transcribe = gr.Interface( | |
fn=transcribe_speech, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs="textbox", | |
) | |
file_transcribe = gr.Interface( | |
fn=transcribe_speech, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs="textbox", | |
) | |
with demo: | |
gr.Markdown( | |
""" | |
<center> | |
<h1> | |
Uso de AI para transcribir audio a texto. | |
</h1> | |
<img src='data:image/jpg;base64,{}' width=200px> | |
<h3> | |
Con este espacio podrás transcribir audio a texto. | |
</h3> | |
</center> | |
""".format(encoded_image)) | |
gr.TabbedInterface( | |
[mic_transcribe, file_transcribe], | |
["Transcribir desde el micrófono.", "Transcribir desde un Archivo de Audio."], | |
) | |
demo.launch() |