Spaces:
Running
Running
""" | |
Method validator component for causal inference methods. | |
This module validates the selected causal inference method against | |
dataset characteristics and available variables. | |
""" | |
from typing import Dict, List, Any, Optional | |
def validate_method(method_info: Dict[str, Any], dataset_analysis: Dict[str, Any], | |
variables: Dict[str, Any]) -> Dict[str, Any]: | |
""" | |
Validate the selected causal method against dataset characteristics. | |
Args: | |
method_info: Information about the selected method from decision_tree | |
dataset_analysis: Dataset analysis results from dataset_analyzer | |
variables: Identified variables from query_interpreter | |
Returns: | |
Dict with validation results: | |
- valid: Boolean indicating if method is valid | |
- concerns: List of concerns/issues with the selected method | |
- alternative_suggestions: Alternative methods if the selected method is problematic | |
- recommended_method: Updated method recommendation if issues are found | |
""" | |
method = method_info.get("selected_method") | |
assumptions = method_info.get("method_assumptions", []) | |
# Get required variables | |
treatment = variables.get("treatment_variable") | |
outcome = variables.get("outcome_variable") | |
covariates = variables.get("covariates", []) | |
time_variable = variables.get("time_variable") | |
group_variable = variables.get("group_variable") | |
instrument_variable = variables.get("instrument_variable") | |
running_variable = variables.get("running_variable") | |
cutoff_value = variables.get("cutoff_value") | |
# Initialize validation result | |
validation_result = { | |
"valid": True, | |
"concerns": [], | |
"alternative_suggestions": [], | |
"recommended_method": method, | |
} | |
# Common validations for all methods | |
if treatment is None: | |
validation_result["valid"] = False | |
validation_result["concerns"].append("Treatment variable is not identified") | |
if outcome is None: | |
validation_result["valid"] = False | |
validation_result["concerns"].append("Outcome variable is not identified") | |
# Method-specific validations | |
if method == "propensity_score_matching": | |
validate_propensity_score_matching(validation_result, dataset_analysis, variables) | |
elif method == "regression_adjustment": | |
validate_regression_adjustment(validation_result, dataset_analysis, variables) | |
elif method == "instrumental_variable": | |
validate_instrumental_variable(validation_result, dataset_analysis, variables) | |
elif method == "difference_in_differences": | |
validate_difference_in_differences(validation_result, dataset_analysis, variables) | |
elif method == "regression_discontinuity_design": | |
validate_regression_discontinuity(validation_result, dataset_analysis, variables) | |
elif method == "backdoor_adjustment": | |
validate_backdoor_adjustment(validation_result, dataset_analysis, variables) | |
# If there are serious concerns, recommend alternatives | |
if not validation_result["valid"]: | |
validation_result["recommended_method"] = recommend_alternative( | |
method, validation_result["concerns"], method_info.get("alternatives", []) | |
) | |
# Make sure assumptions are listed in the validation result | |
validation_result["assumptions"] = assumptions | |
print("--------------------------") | |
print("Validation result:", validation_result) | |
print("--------------------------") | |
return validation_result | |
def validate_propensity_score_matching(validation_result: Dict[str, Any], | |
dataset_analysis: Dict[str, Any], | |
variables: Dict[str, Any]) -> None: | |
""" | |
Validate propensity score matching method requirements. | |
Args: | |
validation_result: Current validation result to update | |
dataset_analysis: Dataset analysis results | |
variables: Identified variables | |
""" | |
treatment = variables.get("treatment_variable") | |
covariates = variables.get("covariates", []) | |
# Check if treatment is binary using column_categories | |
is_binary = dataset_analysis.get("column_categories", {}).get(treatment) == "binary" | |
# Fallback to check if the column has only two unique values (0 and 1) | |
if not is_binary: | |
column_types = dataset_analysis.get("column_types", {}) | |
if column_types.get(treatment) == "int64" or column_types.get(treatment) == "int32": | |
# Assuming int type with only 0s and 1s is binary | |
is_binary = True | |
if not is_binary: | |
validation_result["valid"] = False | |
validation_result["concerns"].append( | |
"Treatment variable is not binary, which is required for propensity score matching" | |
) | |
# Check if there are sufficient covariates | |
if len(covariates) < 2: | |
validation_result["concerns"].append( | |
"Few covariates identified, which may limit the effectiveness of propensity score matching" | |
) | |
# Check for sufficient overlap | |
variable_relationships = dataset_analysis.get("variable_relationships", {}) | |
treatment_imbalance = variable_relationships.get("treatment_imbalance", 0.5) | |
if treatment_imbalance < 0.1 or treatment_imbalance > 0.9: | |
validation_result["concerns"].append( | |
"Treatment groups are highly imbalanced, which may lead to poor matching quality" | |
) | |
validation_result["alternative_suggestions"].append("regression_adjustment") | |
def validate_regression_adjustment(validation_result: Dict[str, Any], | |
dataset_analysis: Dict[str, Any], | |
variables: Dict[str, Any]) -> None: | |
""" | |
Validate regression adjustment method requirements. | |
Args: | |
validation_result: Current validation result to update | |
dataset_analysis: Dataset analysis results | |
variables: Identified variables | |
""" | |
outcome = variables.get("outcome_variable") | |
# Check outcome type for appropriate regression model | |
outcome_data = dataset_analysis.get("variable_types", {}).get(outcome, {}) | |
outcome_type = outcome_data.get("type") | |
if outcome_type == "categorical" and outcome_data.get("n_categories", 0) > 2: | |
validation_result["concerns"].append( | |
"Outcome is categorical with multiple categories, which may require multinomial regression" | |
) | |
# Check for potential nonlinear relationships | |
nonlinear_relationships = dataset_analysis.get("nonlinear_relationships", False) | |
if nonlinear_relationships: | |
validation_result["concerns"].append( | |
"Potential nonlinear relationships detected, which may require more flexible models" | |
) | |
def validate_instrumental_variable(validation_result: Dict[str, Any], | |
dataset_analysis: Dict[str, Any], | |
variables: Dict[str, Any]) -> None: | |
""" | |
Validate instrumental variable method requirements. | |
Args: | |
validation_result: Current validation result to update | |
dataset_analysis: Dataset analysis results | |
variables: Identified variables | |
""" | |
instrument_variable = variables.get("instrument_variable") | |
treatment = variables.get("treatment_variable") | |
if instrument_variable is None: | |
validation_result["valid"] = False | |
validation_result["concerns"].append( | |
"No instrumental variable identified, which is required for this method" | |
) | |
validation_result["alternative_suggestions"].append("propensity_score_matching") | |
return | |
# Check for instrument strength (correlation with treatment) | |
variable_relationships = dataset_analysis.get("variable_relationships", {}) | |
instrument_correlation = next( | |
(corr.get("correlation", 0) for corr in variable_relationships.get("correlations", []) | |
if corr.get("var1") == instrument_variable and corr.get("var2") == treatment | |
or corr.get("var1") == treatment and corr.get("var2") == instrument_variable), | |
0 | |
) | |
if abs(instrument_correlation) < 0.2: | |
validation_result["concerns"].append( | |
"Instrument appears weak (low correlation with treatment), which may lead to bias" | |
) | |
validation_result["alternative_suggestions"].append("propensity_score_matching") | |
def validate_difference_in_differences(validation_result: Dict[str, Any], | |
dataset_analysis: Dict[str, Any], | |
variables: Dict[str, Any]) -> None: | |
""" | |
Validate difference-in-differences method requirements. | |
Args: | |
validation_result: Current validation result to update | |
dataset_analysis: Dataset analysis results | |
variables: Identified variables | |
""" | |
time_variable = variables.get("time_variable") | |
group_variable = variables.get("group_variable") | |
if time_variable is None: | |
validation_result["valid"] = False | |
validation_result["concerns"].append( | |
"No time variable identified, which is required for difference-in-differences" | |
) | |
validation_result["alternative_suggestions"].append("propensity_score_matching") | |
if group_variable is None: | |
validation_result["valid"] = False | |
validation_result["concerns"].append( | |
"No group variable identified, which is required for difference-in-differences" | |
) | |
validation_result["alternative_suggestions"].append("propensity_score_matching") | |
# Check for parallel trends | |
temporal_structure = dataset_analysis.get("temporal_structure", {}) | |
parallel_trends = temporal_structure.get("parallel_trends", False) | |
if not parallel_trends: | |
validation_result["concerns"].append( | |
"No evidence of parallel trends, which is a key assumption for difference-in-differences" | |
) | |
validation_result["alternative_suggestions"].append("synthetic_control") | |
def validate_regression_discontinuity(validation_result: Dict[str, Any], | |
dataset_analysis: Dict[str, Any], | |
variables: Dict[str, Any]) -> None: | |
""" | |
Validate regression discontinuity method requirements. | |
Args: | |
validation_result: Current validation result to update | |
dataset_analysis: Dataset analysis results | |
variables: Identified variables | |
""" | |
running_variable = variables.get("running_variable") | |
cutoff_value = variables.get("cutoff_value") | |
if running_variable is None: | |
validation_result["valid"] = False | |
validation_result["concerns"].append( | |
"No running variable identified, which is required for regression discontinuity" | |
) | |
validation_result["alternative_suggestions"].append("propensity_score_matching") | |
if cutoff_value is None: | |
validation_result["valid"] = False | |
validation_result["concerns"].append( | |
"No cutoff value identified, which is required for regression discontinuity" | |
) | |
validation_result["alternative_suggestions"].append("propensity_score_matching") | |
# Check for discontinuity at threshold | |
discontinuities = dataset_analysis.get("discontinuities", {}) | |
has_discontinuity = discontinuities.get("has_discontinuities", False) | |
if not has_discontinuity: | |
validation_result["valid"] = False | |
validation_result["concerns"].append( | |
"No clear discontinuity detected at the threshold, which is necessary for this method" | |
) | |
validation_result["alternative_suggestions"].append("regression_adjustment") | |
def validate_backdoor_adjustment(validation_result: Dict[str, Any], | |
dataset_analysis: Dict[str, Any], | |
variables: Dict[str, Any]) -> None: | |
""" | |
Validate backdoor adjustment method requirements. | |
Args: | |
validation_result: Current validation result to update | |
dataset_analysis: Dataset analysis results | |
variables: Identified variables | |
""" | |
covariates = variables.get("covariates", []) | |
if len(covariates) == 0: | |
validation_result["valid"] = False | |
validation_result["concerns"].append( | |
"No covariates identified for backdoor adjustment" | |
) | |
validation_result["alternative_suggestions"].append("regression_adjustment") | |
def recommend_alternative(method: str, concerns: List[str], alternatives: List[str]) -> str: | |
""" | |
Recommend an alternative method if the current one has issues. | |
Args: | |
method: Current method | |
concerns: List of concerns with the current method | |
alternatives: List of alternative methods suggested by the decision tree | |
Returns: | |
String with the recommended method | |
""" | |
# If there are alternatives, recommend the first one | |
if alternatives: | |
return alternatives[0] | |
# If no alternatives, use regression adjustment as a fallback | |
if method != "regression_adjustment": | |
return "regression_adjustment" | |
# If regression adjustment is also problematic, use propensity score matching | |
return "propensity_score_matching" |