Spaces:
Running
Running
import gradio as gr | |
from fastai.vision.all import * | |
from fastai.vision.all import PILImage | |
# Load the trained model | |
learn = load_learner('fog_classifier.pkl') | |
# Get the labels from the data loaders | |
labels = learn.dls.vocab | |
# Define the prediction function | |
def predict(img): | |
img = PILImage.create(img) | |
img = img.resize((512, 512)) | |
pred, pred_idx, probs = learn.predict(img) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
# Example images for demonstration | |
examples = [ | |
"dar3.jpg", | |
"dar2.jpg" | |
] | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(), | |
outputs=gr.Label(num_top_classes=3), | |
examples=examples # Move examples here | |
) | |
# Enable the queue to handle POST requests | |
interface.queue(api_open=True) | |
# Launch the interface | |
interface.launch() | |